a, \(\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{5}\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\\x+\dfrac{2}{5}>0\end{matrix}\right.\) hay \(\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\\x+\dfrac{2}{5}< 0\end{matrix}\right.\)
+,Xét \(\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\\x+\dfrac{2}{5}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{3}\\x>-\dfrac{2}{5}\end{matrix}\right.\)
\(\Rightarrow x>\dfrac{1}{3}\)
+, Xét \(\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\\x+\dfrac{2}{5}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< \dfrac{1}{3}\\x< -\dfrac{2}{5}\end{matrix}\right.\)
\(\Rightarrow x< -\dfrac{2}{5}\)
Vậy...........
b, \(\left(x+\dfrac{3}{5}\right)\left(x+1\right)< 0\)
Vì \(x+\dfrac{3}{5}< x+1\) với mọi \(x\in R\)
\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{5}< 0\\x+1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< -\dfrac{3}{5}\\x>-1\end{matrix}\right.\)
Vậy...........
c, \(\dfrac{3}{7}x-\dfrac{2}{5}x=\dfrac{-17}{35}\)
\(\Rightarrow\dfrac{1}{35}x=\dfrac{-17}{35}\)
\(\Rightarrow x=-17\)
d, \(\left(\dfrac{3}{4}x-\dfrac{9}{10}\right)\left(\dfrac{1}{3}+\dfrac{-3}{5}x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x-\dfrac{9}{10}=0\\\dfrac{1}{3}+\dfrac{-3}{5}x=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{10}\\-\dfrac{3}{5}x=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=\dfrac{5}{9}\end{matrix}\right.\)
Vậy.........
Chúc bạn học tốt!!!
a/ \(\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{2}{5}\right)>0\)
TH1:\(\left\{{}\begin{matrix}x-\dfrac{1}{3}>0\\x+\dfrac{2}{5}>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{1}{3}\\x>-\dfrac{2}{5}\end{matrix}\right.\)\(\Rightarrow x>\dfrac{1}{3}\)
TH2:\(\left\{{}\begin{matrix}x-\dfrac{1}{3}< 0\\x+\dfrac{2}{5}< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< \dfrac{1}{3}\\x< -\dfrac{2}{5}\end{matrix}\right.\)\(\Rightarrow x< -\dfrac{2}{5}\)
Vậy \(x>\dfrac{1}{3}\) hoặc \(x< -\dfrac{2}{5}\) thì tm
b/ \(\left(x+\dfrac{3}{5}\right)\left(x+1\right)< 0\)
TH1:\(\left\{{}\begin{matrix}x+\dfrac{3}{5}< 0\\x+1>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< -\dfrac{3}{5}\\x>-1\end{matrix}\right.\) \(\Rightarrow-1< x< -\dfrac{3}{5}\)
TH2:\(\left\{{}\begin{matrix}x+\dfrac{3}{5}>0\\x+1< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>-\dfrac{3}{5}\\x< -1\end{matrix}\right.\)(vô lý)
Vậy....................
c/ \(\dfrac{3}{7}x-\dfrac{2}{5}x=-\dfrac{17}{35}\)
\(\Rightarrow\left(\dfrac{3}{7}-\dfrac{2}{5}\right)x=-\dfrac{17}{35}\)
\(\Rightarrow\dfrac{1}{35}x=-\dfrac{17}{35}\)
\(\Rightarrow x=-\dfrac{17}{35}:\dfrac{1}{35}=-17\)
Vậy.............
d/ \(\left(\dfrac{3}{4}x-\dfrac{9}{10}\right)\left(\dfrac{1}{3}+\dfrac{-3}{5}x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x-\dfrac{9}{10}=0\\\dfrac{1}{3}-\dfrac{3}{5}x=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{9}{10}\\\dfrac{3}{5}x=\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\\x=\dfrac{5}{9}\end{matrix}\right.\)
Vậy.....................