Giải phương trinh sau:
a, \(\sqrt{\left(x+1\right)\left(x+2\right)}\) = \(x^2+3x-4\)
b, \(4x^2-4x-10=\sqrt{8^2-6x-10}\)
c, \(\sqrt{\left(x+1\right)\left(2-x\right)=1+2x-2x^2}\)
d, \(x^2+4x+5=2\sqrt{2x+3}.\)
e, \(2x^2+2x+1=\sqrt{4x+1}\)
f, \(x^2-6x+26=6\sqrt{2x+1}\)
\(g,2x^2-4x+3=2\sqrt{x-1}\)
h, ,\(4\sqrt{x+1}=x^2-5x+14\)
Mn giải giúp ai giải đúng tick điểm
Giải phương trinh sau:
a, \(\sqrt{\left(x+1\right)\left(x+2\right)}\) = \(x^2+3x-4\)
b, \(4x^2-4x-10=\sqrt{8^2-6x-10}\)
c, \(\sqrt{\left(x+1\right)\left(2-x\right)=1+2x-2x^2}\)
d, \(x^2+4x+5=2\sqrt{2x+3}.\)
e, \(2x^2+2x+1=\sqrt{4x+1}\)
f, \(x^2-6x+26=6\sqrt{2x+1}\)
\(g,2x^2-4x+3=2\sqrt{x-1}\)
h, ,\(4\sqrt{x+1}=x^2-5x+14\)
Mn giải giúp ai giải đúng tick điểm
a)\(\sqrt{1-x}\left(x-3x^2\right)=x^3-3x^2+2x+6\)
b)\(x^2+x+12\sqrt{x+1}=36\)
c)\(3x-1+\frac{x-1}{4x}=\sqrt{3x+1}\)
d)\(\sqrt{x^2+12}-3x=\sqrt{x^2+5}-5\)
e)\(4x^2+12+\sqrt{x-1}=4\left(x\sqrt{5x-1}+\sqrt{9-5x}\right)\)
f)\(4x^3-25x^2+43x+x\sqrt{3x-2}=22+\sqrt{3x-2}\)
g)\(2\left(x+1\right)\sqrt{x}+\sqrt{3\left(2x^3+5x^2+4x+1\right)}=5x^3-3x^2+8\)
h)\(\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)
i)\(\sqrt{1-3x}-\sqrt[3]{3x-1}=\left|6x-2\right|\)
k)\(\sqrt{2x^3+3x^2-1}=2x^2+2x-x^3-1\)
l)\(\sqrt{x^2+x-2}+x^2=\sqrt{2\left(x-1\right)}+1\)
Giải các pt sau:
a) \(\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}-6\sqrt{x}=0\)
b) \(x^4-2x^3+\sqrt{2x^3+x^2+2}-2=0\)
c) \(3x\sqrt[3]{x+7}\left(x+\sqrt[3]{x+7}\right)=7x^3+12x^2+5x-6\)
d) \(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
e) \(16x^2+19x+7+4\sqrt{-3x^2+5x+2}=\left(8x+2\right)\left(\sqrt{2-x}+2\sqrt{3x+1}\right)\)
f) \(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+8-\left(x+26\right)\sqrt{x-1}\)
g) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
Giai phuong trinh
1/ \(\sqrt{x^2+4x+5}+\sqrt{x^2-6x+13}=3\)
2/ \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=6x-x^2-5\)
3/ \(\sqrt{2x^2-4x+27}+\sqrt{3x^2-6x+12}=4x^2+8x+4\)
4/ \(\sqrt{x^2+x+7}+\sqrt{x^2+x+2}=\sqrt{3x^2+3x+19}\)
5/ \(\left(x+2\right)\left(x+3\right)-\sqrt{x^2+5x+1}=9\)
6/ \(\left(x+4\right)\left(x+1\right)-3\sqrt{x^2+5x+2}=6\)
7/ \(\sqrt{2x^2+3x+5}+\sqrt{2x^2-3x+5}=3\sqrt{x}\)
Tìm x :
h/ \(\sqrt{x+5}-10=-4\)
i/ \(\sqrt{x-5}+2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)
j/ \(3\sqrt{2x}+\frac{1}{7}\sqrt{98x}-\sqrt{72x}+4=0\)
k/ \(\sqrt{4x^2-20}-\frac{1}{3}\sqrt{x^2-5}+\sqrt{\frac{9x^2-45}{16}}-\frac{1}{2}\sqrt{\frac{25x^2-125}{36}}=4\)
l/ \(\sqrt{4x+4}+\sqrt{9x+9}-\sqrt{x+1}=4\)
m/ \(\sqrt{16\left(x+1\right)}+\sqrt{4x+4}=16-\sqrt{x+1}+\sqrt{9x+9}\)
Giúp mk với nhé mn
Giải phương trình:
1, \(\sqrt{x^2+2x}+\sqrt{2x-1}=\sqrt{3x^2+4x+1}\)
2, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
3, \(2x^3-x^2-3x+1=\sqrt{x^5+x^4+1}\)
4, \(5\sqrt{x^4+8x}=4x^2+8\)
5, \(\left(x^2+4\right)\sqrt{2x+4}=3x^2+6x-4\)
6, \(\left(x^2-6x+11\right)\sqrt{x^2-x+1}=2\left(x^2-4x+7\right)\sqrt{x-2}\)
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)
5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)
Bài 1: Giair các phương trình sau:
3, \(x^2-2-2\sqrt{4x-7}=0\)
4, \(4x^2-5x+1+2\sqrt{x-1}=0\)
BÀI 2: Giair các phương trình sau:
4, \(\sqrt{x-1}+\sqrt{5-x}=x^2-2x+5\)
5, \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
Bài 3: Giair các phương trình sau:
2, \(x^2-x+2=2\sqrt{x^2-x+1}\)
Bài 4: Giair các phương trình sau:
2, \(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
4, \(\left(1+x\sqrt{x^2+1}\right)-\left(\sqrt{x^2+1}-x\right)=1\)
Bài 5: Giair các phương trình sau:
1, \(\sqrt{2x^2-4x+5}-x+4=0\)
2, \(\sqrt{2x+3}+\sqrt{x-1}=\sqrt{x+6}\)
Bài 6: Cho x,y thỏa mãn \(x+y+\dfrac{1}{2}=\sqrt{x}+\sqrt{y}\). Tính giá trị biểu thức:
A = \(\left(4x-2\right)^{2017}+\left(4y-1\right)^{2018}\)