\(\text{a) }4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\\ \Leftrightarrow\left[\left(2x\right)^2-5^2\right]-\left(2x-5\right)\left(2x+7\right)=0\\ \Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\\ \Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\\ \Leftrightarrow-2\left(2x-5\right)=0\\ \Leftrightarrow2x-5=0\\ \Leftrightarrow2x=5\\ \Leftrightarrow x=\dfrac{5}{2}\\ \text{Vậy }x=\dfrac{5}{2}\\ \)
\(\text{b) }2x^3+3x^2+2x+3=0\\ \Leftrightarrow\left(2x^3+3x^2\right)+\left(2x+3\right)=0\\ \Leftrightarrow x^2\left(2x+3\right)+\left(2x+3\right)=0\\ \Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(KTM\right)\\2x=-3\left(TM\right)\end{matrix}\right.\\ \Leftrightarrow x=-\dfrac{3}{2}\\ \text{Vậy }x=-\dfrac{3}{2}\)