TXĐ 1-sin^2x
=> sin^2x=1
=>sinx=1;sinx=-1
=> sinx= pi/2 +k2pi; sinx=-pi/2 +k2pi
ĐKXĐ: \(1-sin^2x\ne0\Rightarrow cos^2x\ne0\)
\(\Leftrightarrow cosx\ne0\Rightarrow x\ne\dfrac{\pi}{2}+k\pi\)
TXĐ 1-sin^2x
=> sin^2x=1
=>sinx=1;sinx=-1
=> sinx= pi/2 +k2pi; sinx=-pi/2 +k2pi
ĐKXĐ: \(1-sin^2x\ne0\Rightarrow cos^2x\ne0\)
\(\Leftrightarrow cosx\ne0\Rightarrow x\ne\dfrac{\pi}{2}+k\pi\)
Tìm txđ của hàm số sau:
1, \(y=sin\sqrt{\dfrac{1+x}{1-x}}\)
2,\(y=\sqrt{\dfrac{sinx+2}{cosx+1}}\)
3,\(y=\dfrac{2}{cosx-cos3x}\)
Tìm txđ của hàm số sau:
1.\(y=\sqrt{\dfrac{1+cosx}{1-cosx}}\)
2.\(y=\dfrac{3}{sin^2x-cos^2x}\)
3.\(y=cos\left(x-\dfrac{\pi}{3}\right)+tan2x\)
Cho hàm số y=\(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\) với x thuộc \(\left(\dfrac{\text{π}}{4};\dfrac{\text{π}}{2}\right)\). Tìm giá trị nhỏ nhất của hàm số
tim txđ y=1/(cosx-sinx)
1/ tìm TXĐ chủa hàm số y = căn 1 - cosx /2 + sinx.
2/ tìm tập giá trị của hàm số y = 2-cos2x.
3/ Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau :
a) y=1 + 2sinx b)y=1 - 2cos^2x
4/ Tìm giá trị nhỏ nhất của hàm số y=tan^2x - 2tanx +3.
cho phương trình \(2cos2x+sin^2xcosx+sinxcos^2x=m\left(sinx+cosx\right)\)tìm m để phương trình có ít nhất 1 nghiệm thuộc đoạn\(\left[0;\dfrac{\Pi}{2}\right]\)
Tìm GTNN và GTLN của hàm số sau:
1.\(y=cosx+cos\left(x-\dfrac{\pi}{3}\right)\)
2.\(y=sin^4x+cos^4x\)
3.\(y=3-2\left|sinx\right|\)
Tìm tập xác định của hàm số :
1.y=\(\frac{1}{sinx-cosx}\)
2.y=\(\frac{3}{sin^2x-cos^2x}\)
3.y=\(\frac{cotx}{cosx-1}\)
3.y=\(\frac{1-sinx}{sinx+1}\)
4.y=\(\frac{1-2cosx}{sin3x-sinx}\)
5.y=\(tanx+cotx\)
6.y=\(\frac{2x}{1-sin^2x}\)
7.y=\(tan\left(3x-1\right)\)
8.y=\(sin\left(x-1\right)\)
9.y=\(\sqrt{\frac{1-sinx}{1+cosx}}\)
10.y=\(\sqrt{sinx+2}\)
1. Cho sinx = \(\dfrac{2}{3}\) , x ∈ (0,\(\dfrac{\Pi}{2}\))
Tính cosx, tanx , sin (x+\(\dfrac{\Pi}{4}\))
2. Cho cos = \(\dfrac{1}{4}\) . Tính sinx, cos2x
3. Cho tanx = 2 . Tính cosx, sinx
x ∈ (0,\(\dfrac{\Pi}{2}\))
4. Rút gọn a) A = cos2x - 2cos2x + sinx +1
b) B = \(\dfrac{cos3x+cos2x+cosx}{cos2x}\)
Tìm txđ của hàm số sau:\(y=\dfrac{x}{sinx+tanx}\)