Bài 5: Khảo sát sự biến thiên và vẽ đồ thị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Dân Lập

Tìm tất cả giá trị thực của tham số m để hàm số y=x^3-3mx^2-9m^2x nghịch biến trên khoảng (0;1)

Chí Cường
20 tháng 12 2019 lúc 15:53

\(y'=3x^2-6mx-9m^2,y'=0\Leftrightarrow\left[{}\begin{matrix}x=-m\\x=3m\end{matrix}\right.\)

Với m=0 thỏa mãn

Dựa vào bảng biến thiên suy ra \(m\ge\frac{1}{3}\) hoặc \(m\le-1\)

Cách khác:

Bạn dùng tính chất sau:Cho hàm số \(f\left(x\right)=ax^2+bx+c\) có 2 nghiệm \(x_1< x_2\) thì \(x_1\le\alpha< \beta\le x_2\Leftrightarrow\left\{{}\begin{matrix}af\left(\alpha\right)\le0\\af\left(\beta\right)\le0\end{matrix}\right.\)

Hàm số nghịch biến trên khoảng (0,1) tương đương với \(y'\le0\) với mọi x thuộc (0,1)

Với m=0 thỏa mãn, xét m khác 0

\(\Delta'_{y'}=36m^2>0\forall m\ne0\) nên y' luôn có hai nghiệm phân biệt \(x_1,x_2\)

\(y'\le0\forall x\in\left(0;1\right)\Leftrightarrow x_1\le0< 1\le x_2\\ \Leftrightarrow\left\{{}\begin{matrix}3y'\left(0\right)\le0\\3y'\left(1\right)\le0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m\ge\frac{1}{3}\\m\le-1\end{matrix}\right.\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Minh Nguyệt
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Minh Nguyệt
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Phú Gia
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Thị Như Huyền
Xem chi tiết
Phương Anh
Xem chi tiết