Cho a,b,c là các số thực không âm thỏa mãn: 0≤a≤b≤c≤1. Tìm giá trị lớn nhất của biểu thức:
Q= a2(b-c)+b2(c-b)+c2(1-c)
Cho a,b,c là các số thực không âm thỏa mãn \(a^2+b^2+c^2=6\).Tìm giá trị nhỏ nhất:\(P=\sqrt{4-a^2}+\sqrt{4-b^2}+\sqrt{4-c^2}\)
Với các số thực ko âm a,b,c thõa mãn a^2+b^2+c^2=1
tìm M= căn a + b + căn b + c + căn c + a
tìm tất cả các số nguyên dương a,b,c là độ dài 3 cạnh của 1 tam giác thỏa mãn
\(\sqrt{\dfrac{19}{A+B-C}}+\sqrt{\dfrac{5}{B+C-A}}+\sqrt{\dfrac{79}{B+C-A}}\in N\ne1\)
tìm tất cả các số nguyên dương a,b,c là độ dài 3 cạnh của 1 tam giác thỏa mãn
\(\sqrt{\dfrac{19}{a=b-c}}+\sqrt{\dfrac{5}{b+c-a}}+\sqrt{\dfrac{79}{a+c-b}}\in N\ne1\)
CÁC BẠN GIÚP MÌNH NHÉ MÌNH CẦN GẤP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
cho a,b,c là các số thực thỏa mãn a,b≥0;0≤c≤1 và a2+b2+c2 =3.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=ab+bc+ca+3(a+b+c)
Cho các số a, b, c không âm. Chứng minh bất đẳng thức:
a + b + c ≥ \(\sqrt{ab}\) + \(\sqrt{bc}\) + \(\sqrt{ca}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có\(\Sigma\left(b+c\right)\sqrt[k]{\dfrac{bc+1}{a^2+1}}\ge6\)
Tìm các số thực x, y, z thõa mãn đk :√x + √y-z + √z-x =1/2(y+3)
Lưu ý : √y-z và √z-x là chung một dấu căn, hay là căn lớn trong đó có y-z ,z-x ( tại vì tui không biết gõ như thế nào nên đành vây)
Mong có cao nhân nào giải được bài toán, đội ơn