Ta có
\(p^2+p^p=p\left(p+p^{p-1}\right)\)
p là số nguyên tố
\(\Rightarrow p\ge2\)
\(\Rightarrow p+p^{p-1}\ge2+2^{2-1}\)
\(\Rightarrow p+p^{p-1}\ge4\)
Khi đó \(p\left(p+p^{p-1}\right)\)
Vì \(\begin{cases}p\ge2\\p+p^{p-1}\ge4\end{cases}\)
\(\Rightarrow p\left(p+p^{p-1}\right)\) có các ước là p và p+pp-1 đều lớn hơn 0
\(\Rightarrow p\left(p+p^{p-1}\right)\) có nhiều hơn 2 ước
\(\Rightarrow p\left(p+p^{p-1}\right)\) là hợp số
=> không tồn tại p