ta có: \(28+211+2n=239+2n\)
Đặt \(239+2n=t^2\left(t\in N\right)\) \(\Rightarrow225+14+2n=t^2\)
\(\Rightarrow14+2n=t^2-15^2\Rightarrow2\left(n+7\right)=\left(t+15\right)\left(t-15\right)\)
\(\left(t+15\right)\left(t-15\right)⋮2\) mà 2 là số nguyên tố
nên \(\left(t+15\right)⋮2\) và \(\left(t-15\right)⋮2\)
\(\Rightarrow t=2k\pm15\left(k\in N\right)\)
\(\Rightarrow2\left(n+7\right)=\left(2k\pm15\right)^2-15^2\)
\(\Rightarrow2\left(n+7\right)=4k^2\pm60k+15^2-15^2\)
\(\Rightarrow2\left(n+7\right)=4k^2\pm60k\)
\(\Rightarrow2\left(n+7\right)=2\left(2k^2\pm30k\right)\)
\(\Rightarrow n+7=2k^2\pm30k\Rightarrow n=2k^2\pm30k-7\)
Vậy với \(n=2k^2\pm30k-7\)
thì \(28+211+2n\) là số chính phương