Đại số lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Anh Quân

Câu 3

1. Cho a và b là các số tự nhiên thoả mãn \(2a^2+a=3b^2+b\)

Chứng minh rằng: a-b và 3a+3b+1 là các số chính phương.

2. Tìm các cặp số nguyên dương (x; y) thỏa mãn 6x + 5y + 18 = 2xy

Nguyễn Như Nam
10 tháng 11 2016 lúc 14:41

Câu 1:

Ta có: \(2a^2+a=3b^2+b\Rightarrow2a^2+a-3b^2-b=0\Rightarrow3\left(a^2-b^2\right)+\left(a-b\right)=a^2\)

\(\Rightarrow3\left(a-b\right)\left(a+b\right)+\left(a-b\right)=a^2\Rightarrow\left(a-b\right)\left(3a+3b+1\right)=a^2\)

Gọi \(ƯCLN\)\(\left(a-b;3a+3b+1\right)=d\)

=> \(a-b⋮d;3a+3b+1⋮d\Rightarrow\left(a-b\right)\left(3a+3b+1\right)⋮d^2\Rightarrow a^2⋮d^2\Rightarrow a⋮d\Rightarrow6a⋮d\left(1\right)\)

Mà ta lại có: \(3\left(a-b\right)+\left(3a+3b+1\right)⋮d\Rightarrow6a +1⋮d\left(2\right)\)

Từ 1 và 2 => \(d=1\) => \(a-b\)\(3a+3b+1\) là 2 số nguyên tố cùng nhau.

Và đồng thời \(3a+3b+1>a-b\Rightarrow\begin{cases}3a+3b+1=a^2\\a-b=1^2\end{cases}\)

Vậy \(3a+3b+1\)\(a-b\) đều là các số chính phương.

Câu 2:

Ta có: \(6x+5y+18=2xy\Rightarrow5y+18=2xy-6x=2x\left(y-3\right)\Rightarrow2x=\frac{5y+18}{y-3}=\frac{5\left(y-3\right)+33}{y-3}=5+\frac{33}{y-3}\)

Do \(x;y\in Z\Rightarrow\)\(\frac{33}{y-3}\in Z\Rightarrow33⋮y-3\Rightarrow y-3\inƯ\left(33\right)=\left\{\pm1;\pm3;\pm11;\pm33\right\}\)

Ta có bảng sau:

y-31-13-311-1133-33
2x-533-3311-113-31-1
2x38-2816-68264
x19-148-34132
y426014-936-30

 

Vậy \(\left(x;y\right)=\left(19;4\right);\left(-14;2\right);\left(8;6\right);\left(-3;0\right);\left(4;14\right);\left(1;-9\right);\left(3;36\right);\left(2;-30\right)\)

 

 

 

Nguyễn Như Nam
10 tháng 11 2016 lúc 14:43

Bạn nên ấn cái này để dễ nhìn hơn

Đại số lớp 8


Các câu hỏi tương tự
Lê Ngọc Kiều Ly
Xem chi tiết
No ri do
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
kuchiki rukia
Xem chi tiết
Hải Ninh
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Đạt Nguyễn
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Phương Anh Trần
Xem chi tiết