Trong mặt phẳng Oxy cho pt (C) : (x+3)2 + (y-1)2 =5 và v = (-3;1) . Viết pt đường tròn (C’) biết (C’) là ảnh của (C) qua phép đồng dạng có được bằng thực hiện liên tiế phép tịnh tiến theo vecto V và phép vị tự tâm O tỷ số k= 2.
Câu 1: trong mặt phẳng có tọa độ Oxy, cho đường thẳng d: 3x - 2y + 1 = 0. Tìm ảnh của đường thẳng d qua phép tịnh tiến theo vecto \(\overrightarrow{v}\) = (2;-1).
Câu 2: trong mặt phẳng Oxy, cho đường tròn (C): x2 + y2 - 4x + 6y + 5 = 0. Tìm ảnh của (C) qua phép tịnh tiến theo vecto \(\overrightarrow{v}\) = (-3;5).
Giải giúp mình với, gấp ạ
Cho đường tròn (C): x2 + y2 - 2x + 4y - 4 = 0. Tìm ảnh của (C) qua phép tịnh tiến theo vecto \(\overrightarrow{v}\) ( -3; 1)?
trong mặt phẳng oxy cho điểm A(-2;3) duong thang d:4x+3y+6=0 va duong tron: (x-3)2+(y-1)2 =9 . tìm ảnh của A qua phép tịnh tiến theo véc tơ v=(3;-2), đường thẳng d qua phép tịnh tiến theo véc tơ v(2;-5) và đường tròn (C) qua phép tịnh tiến theo véc tơ v=(2;-3).
cho \(\left(C\right):x^2+y^2+4x-4y-1=0\)
\(\left(d\right):4x+3y-1=0\)
\(\overrightarrow{u}\left(a;2-a\right)\)
Qua phép tịnh tiến T theo \(\overrightarrow{u}\) đường thẳng d biến thành đường thẳng d'. Tìm a để d' và (C) tiếp xúc với nhau
Cho Elip (E): \(\dfrac{x^2}{9}+\dfrac{y^2}{a}=1\). Tìm (E') là ảnh của (E) qua phép tịnh tiến theo v(2;1)
Cho Elip (E) \(\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\). Tìm (E') là ảnh của (E) qua phép tịnh tiến theo v(2;1)
Trong mp Oxy cho điểm A (3;-1), đường thẳng d: x+y-1=0 và đường tròn ( C ) : x^2+y^2+2x-3y-1=0.tìm ảnh của A;d và (C) qua phép quay tâm O góc quay là -90°
Bài 1. Trong mặt phẳng tọa độ Oxy cho điểm M(4;-3) và vectơ u ( -2;1). Qua phép tịnh tiến theo vecto u:
1) Tìm tọa độ điểm M' là ảnh của M
2) Tìm tọa độ điểm A biết M là ảnh của A
3) Tìm đường thẳng d' là ảnh của d: 3x - 4y +5 = 0
4) Tìm đường thẳng d1với d2 là ảnh của d1.
5) Tìm đường thẳng d5 là ảnh của d4: x + 2y +9 =0
6) Tìm đường tròn (C') là ảnh của (C): x2 + y2 -4x + 6y -7 =0