\(\left(x+5\right).\left(x-4\right)=0\)
\(x+5=0\) hay \(x-4=0\)
Mà : \(x\in N\Rightarrow x+5\ge5\)
\(\Rightarrow x-4=0\Rightarrow x=4\)
Vậy x = 4
\(\left(x+5\right).\left(x-4\right)=0\)
\(\Rightarrow x+5=0\) hoặc \(x-4=0\)
+) \(x+5=0\Rightarrow x=-5\)
+) \(x-4=0\Rightarrow x=4\)
Mà \(x\in\) N nên \(x=4\)
Vậy \(x=4\)
(x + 5).(x - 4) = 0
=> \(\left[\begin{array}{nghiempt}x+5=0\\x-4=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=-5\\x=4\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=-5\\x=4\end{array}\right.\)