HỌC TỐT NHÉ
c,\(x^{2005}=x\Leftrightarrow\left[{}\begin{matrix}x^{2005}=x=0\\x^{2005}=x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b,\(5^x.5^{19}=5^{20}.5^{11}\Leftrightarrow5^{x+19}=5^{20+11}\Leftrightarrow x+19=31\Leftrightarrow x=12\)
a,Cau nay hinh nhu sai de ban a 3\(^x\)+\(3^{x+1}+3^{x+2}=1003\)\(\Leftrightarrow3^x.1+3^x.3+3^x.3^2=1003\Leftrightarrow3^x.\left(1+3+9\right)=1003\Leftrightarrow3^x.13=1003\Leftrightarrow3^x=\dfrac{1003}{13}\)
\(3^x+3^{x+1}+3^{x+2}=1003\)
\(3^x.1+3^x.3+3^x.3^2=1003\)
\(3^x\left(1+3+3^2\right)=1003\)
\(3^x.13=1003\)
\(3^x=\dfrac{1003}{13}\)
..........
\(5^x.5^{19}=5^{20}.5^{11}\)
\(5^x.5^{19}=5^{31}\)
\(5^x=5^{12}\Rightarrow x=12\)
\(x^{2005}=x\Rightarrow x=\left\{0;1;-1\right\}\)