Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
TRANG

tìm số tự nhiên nhỏ nhất chia cho 8 ; 10 ; 15 ; 20 có số dư lần lượt là 5 ; 7 ; 12 ; 17

Trần Quỳnh Mai
17 tháng 12 2016 lúc 16:56

Gọi số tự nhiên cần tìm là a ( a \(\in\) N* )

Theo đề ra , ta có :

a chia cho 8 dư 5 \(\Rightarrow a+3⋮8\)

a chia cho 10 dư 7 \(\Rightarrow a+3⋮10\)

a chia cho 15 dư 12 \(\Rightarrow a+3⋮15\)

a chia cho 20 dư 17 \(\Rightarrow a+3⋮20\)

\(\Rightarrow a+3⋮8,10,15,20\Rightarrow a+3\in BC\left(8,10,15,20\right)\)

Ta có : \(8=2^3;10=2.5;15=3.5;20=2^2.5\)

\(\Rightarrow BCNN\left(8,10,15,20\right)=2^3.3.5=120\)

\(\Rightarrow BC\left(8,10,15,20\right)=\left\{0;120;240;...\right\}\)

\(\Rightarrow a+3\in\left\{0;120;240;...\right\}\Rightarrow a\in\left\{0;117;237;...\right\}\)

Mà : a nhỏ nhất \(\ne0\Rightarrow a=117\)

Vậy số tự nhiên cần tìm là 117

bảo nam trần
17 tháng 12 2016 lúc 17:03

Gọi số cần tìm là a

Ta có a : 8 dư 5 => a + 3 ⋮ 8

a : 10 dư 7 => a + 3 ⋮ 10

a : 15 dư 12 => a + 3 ⋮ 15

a : 20 dư 17 => a + 3 ⋮ 20

=>a + 3\(\in\) BC(8,10,15,20)

8 = 23

10 = 2.5

15 = 3.5

20 = 22.5

BCNN(8,10,15,20) = 23.3.5 = 120

=> a + 3 \(\in\) BC(8,10,15,20) = B(120) = {0;120;240;...}

=> a \(\in\) {-3;117;237;...}

Vì a nhỏ nhất nên a = 117


Các câu hỏi tương tự
Leona
Xem chi tiết
Đức Nhật Huỳnh
Xem chi tiết
Đức Nhật Huỳnh
Xem chi tiết
Alex Arrmanto Ngọc
Xem chi tiết
Lê Nhật Minh
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết
Thảo Vy
Xem chi tiết
Huỳnh Đan
Xem chi tiết
Đinh Hoàng Anh
Xem chi tiết