2n+5⋮n+1
vì (n+1)⋮(n+1)
=> 2(n+1)⋮(n+1)
=> (2n+2)⋮(n+1)
=> (2n+5)-(2n+2)⋮(n+1)
=> (2n+5-2n-2)⋮(n+1)
=> 3⋮(n+1)
=> (n+1)∈Ư(3){1;3}
=> n∈{0;2}
vậy n∈{0;2}
Giai:
2n+5⋮n+1 = 2(n+1)+3⋮n+1
⇒ n+1∈ Ư(3)⇒Ư(3)={1;3}
nếu n=3⇒n=4
n=1⇒n=2
vậy n= {4;2}