Ta có:
2n + 3 = 2n - 6 + 9 = 2(n - 6) + 9 \(⋮\) n - 3
=> 9 \(⋮\) n - 3 => n - 3 \(\in\) Ư (9) = {\(\pm\)1; \(\pm\)9}
=> n \(\in\) {-2; -4; 6; -12}
Lộn:
Ta có:
\(2n+3=2n-6+9=2\left(n-3\right)+9⋮n-3\)
\(\Rightarrow9⋮n-3\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow n\in\left\{4;2;6;0;12;-6\right\}\)
Vì : \(2n+3⋮n-3\) ; \(n-3⋮n-3\)
\(\Rightarrow2\left(n-3\right)⋮n-3\Rightarrow2n-6⋮n-3\)
\(\Rightarrow\left(2n+3\right)-\left(2n-6\right)⋮n-3\)
\(\Rightarrow2n+3-2n+6⋮n-3\Rightarrow9⋮n-3\)
\(\Rightarrow n-3\in\left\{\pm1;\pm3;\pm9\right\}\)
+) Nếu : n - 3 = 1 => n = 1 + 3 = 4
n - 3 = -1 => n = -1 + 3 = 2
n - 3 = 3 => n = 3 + 3 = 6
n - 3 = -3 => n = -3 + 3 = 0
n - 3 = 9 => n = 9 + 3 = 12
n - 3 = -9 => n = -9 + 3 = -6
Vậy \(n\in\left\{4;2;6;0;12;-6\right\}\)