Ta có:
\(A=1+2^2+2^3+...+2^{2011}+2^{2012}+2^{2013}\)
\(A=1+\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2011}+2^{2012}+2^{2013}\right)\)
\(A=1+2^2\cdot\left(1+2+2^2\right)+2^5\cdot\left(1+2+2^2\right)+...+2^{2011}\cdot\left(1+2+2^2\right)\)
\(A=1+2^2\cdot7+2^5\cdot7+...+2^{2011}\cdot7\)
\(A=1+7\cdot\left(2^2+2^5+...+2^{2011}\right)\)
Vì \(7⋮7\)
\(\Rightarrow7\cdot\left(2^2+2^5+...+2^{2011}\right)⋮7\)
\(\Rightarrow1+7\cdot\left(2^2+2^5+...+2^{2011}\right)\) chia 7 dư 1
hay \(A\) chia 7 dư 1
Vậy A chia 7 dư 1.