Bài 5b: Tiếp tuyến của đồ thị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Nhật Bảo Khang

Tìm những điểm trên đồ thị (C) của hàm số \(y=x+1+\frac{1}{x-1}\) có hoành độ lớn hơn 1 sao cho tiếp tuyến tại đó tạo với hai tiệm cận một tam giác có chu vi nhỏ nhất.

Nguyễn Thái Bình
29 tháng 4 2016 lúc 16:18

Xét : \(M\left(x_0;x_0+1+\frac{1}{x_0+1}\right)\)

Tiếp tuyến tại M có phương trình \(y=\left(1-m^2\right)x+m^2+2m+1\) (với \(m=\frac{1}{x_0-1}\))

tiếp tuyến cắt tiệm  cận đứng tại \(A\left(1;2m+2\right)\); cắt tiệm cận tại \(B\left(1+\frac{2}{m};2+\frac{2}{m}\right)\) và hai tiệm cận cắt nhau tại I(1;2)

Chu vi tam giác ABI : \(P=AB+BI+IA=\sqrt{4m^2+\frac{8}{m^2}+8}+\frac{2\sqrt{2}}{\left|m\right|}+2\left|m\right|\)

Áp dụng Bất đẳng thức Côsi, ta có :

\(4m^2+\frac{8}{m^2}\ge8\sqrt{2};\frac{2\sqrt{2}}{\left|m\right|}+2\left|m\right|\ge4\sqrt[4]{2}\Rightarrow P\ge\sqrt{8\sqrt{2}+8}+4\sqrt[4]{2}\)

Đẳng thức xảy ra \(\Leftrightarrow m=\pm\sqrt[4]{2}\)

Vậy \(M\left(1\pm\frac{1}{\sqrt[4]{2}};2\pm\frac{1}{\sqrt[4]{2}}\pm\sqrt[4]{2}\right)\)


Các câu hỏi tương tự
Trần Đào Tuấn
Xem chi tiết
Nguyễn Hồ Kim Trang
Xem chi tiết
Nguyễn Duy Vũ Hoàng
Xem chi tiết
Trần Minh Ngọc
Xem chi tiết
Ngoc Huyen Nguyen
Xem chi tiết
Võ Thị Thùy Dung
Xem chi tiết
Phan Anh Dũng
Xem chi tiết
Nguyễn Trọng Minh Tín
Xem chi tiết
Phan Trần Quốc Bảo
Xem chi tiết