\(x+2\sqrt{x}+3\)
= \(\left(\sqrt{x}\right)^2+2.\sqrt{x}.1+1^2+2\)
= \(\left(\sqrt{x}+1\right)^2+2\)
Vì \(\left(\sqrt{x}+1\right)^2\ge1\) (vì \(\sqrt{x}\ge0\)nên \(\left(\sqrt{x}+1\right)^2+2\) \(\ge3\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=1\) => \(\sqrt{x}=1-1=0\) => x=0.
Vây min: \(x+2\sqrt{x}+3\) bằng 3 khi x=0