CM Ax=Bz=Cy
Cho hàm số y=f(x) có đạo hàm f’(x)=x2(x-1)(13x-15)3. Khi đó số điểm cực trị hàm số y= f(\(\frac{5x}{x^2+4}\)) là
A.5 B.2 C.3 D.6
Bài tập 2: Tính thể tích vật thể được giới hạn.
a, \(y=cosx,y=0,x=\pi,x=0\)
b, \(y=-x^2+2x+3,y=\dfrac{1}{2}x,x+\dfrac{1}{2}\)
c, \(y=2-x-x^2,y=0\)
các bạn giải giúp mình mấy câu bất đẳng thức này với
1) tìm GTLN
a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\)
b)y=\(\dfrac{x}{x^2+2}\) x>0
2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\)
3)cho x,y>0 thỏa mãn x+y=2 . CM
a)xy(x2+y2)\(\le2\)
b)x3y3(x3+y3)\(\le2\)
4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\)
tìm GTLN A= (3-x)(4-y)(2x+3y)
5) biết x,y,z,u\(\ge0\)và 2x+xy+z+yzu=1
tìm GTLN của P=x2y2z2u
6)cho a,b,c>0 và a+b+c=3 .CMR:\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)
7) cho 3 số dương x,y,z có tổng bằng 1 .CMR : \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{xz}{xz+y}}\le\dfrac{3}{2}\)
8)cho 3 số dương a,b,c có tổng bằng 3 .
tìm GTLN của S=\(\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)
ko cần làm chi tiết lắm chỉ cần hướng dẫn là đc zùi
Bài 1 : tìm x biết :
a) (x-1)\(^2\) + (2-x) ( x+3) = 17
b) (x+2)(x\(^2\) -2x+4) - x (x\(^2\) - 2)=15
c) (x-3)(x+3)-9(\(\frac{1}{9}\)x+1) = 15
d) x(x+5) - (x+2) (x-2)=3
Bài 2 : Tìm giá trị lớn nhất của biểu thức
a) D= -x\(^2\) +6x - 11
b) F= 4x-x\(^2\) +1
Bài 3 : cho a+b=8 và ab=15 . Hãy tính giá trị biểu thức mà không tính a,b
a) C = a\(^4\) + b\(^4\)
Giúp mình với ToT
Bài tập số 3: Tìm các số thực x,y thỏa mãn.
a, (3 - 2i) x + (5 - 7i) y = 1 - 3i
b, \(\left(1+2i\right)^2x-\left(4-5i\right)y=2i\)
Bài 1: Tìm điều kiện của x để có biểu thức sau có ý nghĩa:
a) \(\sqrt{2x}\) b) \(\sqrt{x-1}\) c) \(\sqrt{\frac{1}{x+1}}\) d) \(\sqrt{\left(x+1\right)\left(x-1\right)}\)
Bài 2: rút gọn các biểu thức:
a) \(2\sqrt{2}+\sqrt{18}-\sqrt{32}\)
b) \(2\sqrt{5}+\sqrt{\left(1-\sqrt{5}\right)^2}\)
c) \(\frac{1}{\sqrt{3}+1}+\frac{1}{\sqrt{3}-1}-2\sqrt{3}\)
Bài 3: xác định hàm số bậc nhất y=ax+b
a) Biết đồ thị của hàm số song song với đường tahwngr y=2x và đi qua điểm A(1;4)
b) Vẽ đồ thị hàm số ứng với a, b vừa tìm được
Bài 4: Cho tam giác ABC vuông tại A. Biết BC=10cm, góc C=30độ. Gải tam giác vuông ABC
Bài 5: Cho tam giác ABC vuông tại A, đường cao AH. biết AB=3, AC=4. (phải vẽ hình)
a) Tính AH, BH?
b) chứng minh CB là tiếp tuyến của đường tròn (A, AH)
c) kẻ tiếp tuyến BI và CK với đường tròn (A,AH) (I,K là điểm). Chứng minh: BC=BI+CK và ba điểm I, A, K thẳng hàng
Câu 1: Cho hàm số \(f\left(x\right)\) liên tục trên \(R\) và thoả mãn \(\int\limits^1_0f\left(x\right)dx=\int\limits^1_0\frac{f\left(x\right)}{f’\left(x\right)}dx=\int\limits^1_0\frac{\left(f\left(x\right)\right)^2}{xf\left(x\right)}dx=6\int\limits^{\frac{3}{2}}_{\frac{1}{2}}\left(f\left(x\right)\right)^2-f’\left(x\right)dx\)
Khi này tính \(f\left(cos\left(f\left(\pi\right)\right)\right)+f‘\left(x\right)\) bằng:
a) 0
b) 1
c) 2
d) -1
Câu 2: Cho cấp số cộng có \(u_1=2\) và \(u_7=23\) .
a) Xác định công thức tổng quát của cấp số cộng trên
b) Tính \(S=u_1+\left(u_2+u_4+u_6+...+u_{20}\right)\)
c) Cho \(u_5+u_6+...+u_{12}=u_{24}+u_{26}+...+u_{40}-m\)Tìm giá trị \(m\) theo các số hạng của cấp số cộng trên.
Câu 3: Một số điện thoại của công ty A có dạng \(1900abcxyz\). Hỏi xác suất là bao nhiêu để thoả mãn các trường hợp sau:
TH1: số \(a,b,c\) lập thành một cấp số cộng với công sai là 4 và chia hết cho 3 và thoả mãn tổng ba số \(x,y,z\) lớn hơn tổng \(a,b,c\) 2 đơn vị và chia hết 2.
TH2: Các chữ số thoả mãn \(x+a=y+b=z+c\)
TH3: Các chữ số thoả mãn \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) và đôi một khác nhau
TH4: Các chữ số thoả mản \(x.y.z=a.b.c\) và đôi một khác nhau
Bài tập 3: Tính thể tích vật thể được giới hạn.
b, \(y=-x^2+2x+3,y=\dfrac{1}{2}x,x+\dfrac{1}{2}\)