\(A=\frac{-\left(x^2-7\right)-2}{x^2-7}=-1-\frac{2}{x^2-7}\)
Ta có
\(x^2\ge0\) với mọi x
\(\Rightarrow x^2-7\ge-7\)
\(\Rightarrow\frac{1}{x^2-7}\le-\frac{1}{7}\)
\(\Rightarrow-\frac{2}{x^2-7}\ge\frac{2}{7}\)
\(\Rightarrow5-\frac{2}{x^2-7}\ge\frac{37}{7}\)
\(\Rightarrow A\ge\frac{37}{7}\)
Dấu " = " xảy ra khi x=0
Vậy MinA=\(\frac{37}{7}\) khi x=o