a/ \(\Delta'=m^2-\left(m^2-2m-3\right)=2m+3\)
Do m nguyên dương \(\Rightarrow\Delta'>0\) nên pt luôn có nghiệm.
Để pt có nghiệm nguyên \(\Rightarrow\Delta'\) là số chính phương. Mà \(2m+3\) lẻ \(\Rightarrow\Delta'\) là số chính phương lẻ
Đặt \(2m+3=\left(2k+1\right)^2\) với \(k\in N;k>0\)
\(\Rightarrow2m+3=4k^2+4k+1\Rightarrow2m=4k^2+4k-2\Rightarrow m=2k^2+2k-1\)
Vậy với mọi m có dạng \(m=2k^2+2k-1\) trong đó k là số tự nhiên khác 0 thì pt luôn có nghiệm nguyên
b/ \(\Delta'=\left(m+1\right)^2-\left(m-1\right)\left(m+7\right)=8-4m\ge0\Rightarrow m\le2\)
Mà m nguyên dương \(\Rightarrow m=1\) hoặc \(m=2\)
Với \(m=1\Rightarrow4x+8=0\Rightarrow x=-2\) nguyên (t/m)
Với \(m=2\Rightarrow x^2+6x+9=0\Leftrightarrow\left(x+3\right)^2=0\Rightarrow x=-3\) nguyên (t/m
Vậy m=1 hoặc m=2
Câu c/ bạn tự giải nốt
c/ \(\Delta'=m^2-2m-10\ge0\Rightarrow m\ge1+\sqrt{11}\)
Để pt có nghiệm nguyên \(\Rightarrow\Delta'\) là số chính phương. Với \(k\) nguyên:
Đặt \(m^2-2m-10=k^2\Leftrightarrow m^2-2m+1-11=k^2\)
\(\Leftrightarrow\left(m-1\right)^2-k^2=11\Leftrightarrow\left(m-1-k\right)\left(m-1+k\right)=11=1.11=\left(-1\right).\left(-11\right)\)
Ta có các trường hợp:
TH1: \(\left\{{}\begin{matrix}m-1-k=1\\m-1+k=11\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m-k=2\\m+k=12\end{matrix}\right.\) \(\Rightarrow m=7\)
TH2: \(\left\{{}\begin{matrix}m-1-k=11\\m-1+k=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m-k=12\\m+k=2\end{matrix}\right.\) \(\Rightarrow m=7\)
TH3: \(\left\{{}\begin{matrix}m-1-k=-1\\m-1+k=-11\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m-k=0\\m+k=-10\end{matrix}\right.\) \(\Rightarrow m=-5< 0\left(l\right)\)
TH4: \(\left\{{}\begin{matrix}m-1-k=-11\\m-1+k=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m-k=-10\\m+k=0\end{matrix}\right.\) \(\Rightarrow m=-5\left(l\right)\)
Vậy với \(m=7\) thì pt có nghiệm nguyên