x2^2-x1x2+2(m-2)x1=m^2-6m+23
=>x2^2+x1(x1+x2)-x1x2=m^2-6m+23
=>(x1+x2)^2-2x1x2=m^2-6m+23
=>(2m-4)^2-2(-7)=m^2-6m+23
=>4m^2-16m+16+14-m^2+6m-23=0
=>m=7/3 hoặc m=1
x2^2-x1x2+2(m-2)x1=m^2-6m+23
=>x2^2+x1(x1+x2)-x1x2=m^2-6m+23
=>(x1+x2)^2-2x1x2=m^2-6m+23
=>(2m-4)^2-2(-7)=m^2-6m+23
=>4m^2-16m+16+14-m^2+6m-23=0
=>m=7/3 hoặc m=1
Tìm tham số m để phương trình: x2 - 4x + m - 1 = 0 có 2 nghiệm phân biệt x1,x2 thỏa mãn \(x_1^2x_2+x_1x_2^2-2\left(x_1+x_2\right)=0\)
1 . Cho pt :\(x^2-mx+m-1=0\) . Tìm m để pt có 2 nghiệm \(x_1,x_2\) và biểu thức \(A=\dfrac{2x_1x_2+3}{x^2_1+x^2_2+2\left(x_1x_2+1\right)}\) đạt GTLN
2.Giả sử m là giá trị để phương trình \(x^2-mx+m-2=0\) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{x_1^{^2}-2}{x_1-1}.\dfrac{x^2_2-2}{x_2-1}=4\) . Tìm các giá trị của m
Cho pt: \(x^2-x+m\)=0 (1)
Tìm m để pt(1) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn:
\(\left(x^2_1+x_2+m\right)\left(x_2^2+x_1+m\right)\)= \(m^2-m-1\)
Cho pt \(x^2-\left(m-3\right)x-2m+2=0\)
Gọi x1, x2 là 2 nghiệm của pt đã cho. Tìm m để \(x_2^2-x_1=2\)
Cho pt \(x^2-\left(m-3\right)x-2m-2=0\)
Gọi x1, x2 là 2 nghiệm của pt đã cho. Tìm m để \(x_2^2-x_1=2\)
cho pt \(x^2-4x+m-1=0\) với m là tham số
a) giải pt với m=4
b) tìm m để pt có 2 nghiệm phân biệt thỏa mãn: \(x_1\left(x_1+2\right)+x_2\left(x_2+2\right)=20\)
Cho pt: \(x^2-2\left(m+1\right)x+2m=0\). Pt này luôn có 2 nghiệm phân biệt \(x_1;x_2\) \(\forall m\). Tìm m để 2 nghiệm \(x_1;x_2\) thỏa mãn:
\(x_1^2=9x_2+10\) (với \(x_1\)≥ 4)
\(x^2-2\left(m-1\right)x+2m-5=0\)
a.Tìm m để phương trình có 1 nghiệm bậc 2. Tìm nghiệm còn lại
b.Tìm m để phương trình có 2 nghiệm x1,x2. Thỏa mãn \(\sqrt{x_1}-\sqrt{x_2}=2\)
Cho pt: \(x^2-2\left(m+1\right)x+2m=0\). pt trình này luôn có 2 nghiệm phân biệt \(x_1;x_2\) với ∀m. Khi đó tìm m để 2 nghiệm \(x_1;x_2\) thỏa mãn: \(x_1^2=9x_2+10\) (với \(x_1\)≥ 4)