Tìm m để phương trình \(x-4\sqrt{x+3}+m-2=0\) có 2 nghiệm phân biệt
Bài 3: Tìm m để bất phương trình: x2 - 2x + 1 - m2 ≤ 0 nghiệm đúng với ∀x ∈ [1; 2]. Bài 4: Tìm m để bất phương trình: (m - 1)x2 + (2 - m)x- 1 > 0 có nghiệm đúng với mọi∀x ∈ (1; 2). Bài 5: Tìm m để bất phương trình: 3(m - 2)x2 + 2(m + 1)x + m - 1 < 0 có nghiệm đúngvới mọi ∀x ∈ (-1; 3). Bài 6: Tìm m để bất phương trình m2 - 2mx + 4 > 0 có nghiệm đúng với mọi ∀x ∈ (-1;0,5)
Cho phương trình \(\left(m-10\right)x^2-4mx+m-4=0\)
a) Tìm m để phương trình có nghiệm
b) Tìm m để phương trình có hai nghiệm phân biệt đều dương
c) Tìm m để phương trình có hai nghiệm x1; x2 sao cho \(\dfrac{1}{x_1}+\dfrac{1}{x^2}>1\)
1)Tìm tất cả giá trị của m để phương trình 2x - \(\sqrt{x-3}\) -m =0 có nghiệm
2)Tìm m để phương trình f(x)=3x2-6mx+2m+1=0 có nghiệm thỏa mãn :
a) x1< -1 ≤ x2 c) x1 < x2 ≤ 2
b) 1 < x1 < x2 d) -2 ≤ x1 ≤ x2
3) Tìm m để phương trình x2 + ( x +1 )2 +\(\dfrac{m}{x^2+x+1}\) -3=0 có 4 nghiệm phân biệt
4) f(x) mx2 + 2(m-3)x +2m =0 có 2 nghiệm phân biệt , x1 ∈ (-1;2) nghiệm còn lại x2 ∉ [ -1 ; 2 ]
Tìm m để bất phương trình \(x^2-2x+4\sqrt{\left(4-x\right)\left(x+2\right)}-18+m\ge0\) nghiệm đúng với mọi \(x\in\left[-2;4\right]\)
Tìm tất cả các giá trị của tham số m để bất phương trình( m - 1) x^2-2x + m + 1> 0 nghiệm đúng với mọi x> 0
Tìm m để pt có nghiệm phân biệt trái dấu
a) \(2x^2-\left(m^2-m+1\right)x+2m^2-3m-5=0\)
b) \(\left(m^2-3m+2\right)x^2-2m^2x-5=0\)
c) \(x^2-2\left(m-1\right)+m^2-2m=0\)( nghiệm âm có giá trị tuyệt đối lớn hơn)
Bài 1: Cho bất phương trình \(4\sqrt{\left(x+1\right)\left(3-x\right)}\le x^2-2x+m-3\). Xác định m để bất phương trình nghiệm \(\forall x\in[-1;3]\)
Bài 2: Cho bất phương trình \(x^2-6x+\sqrt{-x^2+6x-8}+m-1\ge0\). Xác định m để bất phương trình nghiệm đúng \(\forall x\in[2;4]\)
1.Cho \(f\left(x\right)=mx^2+\left(4m-3\right)x+4m-6\). Tìm m để bất phương trình \(f\left(x\right)\ge0\) đúng với \(\forall x\in\left(-1;2\right)\)
2. Cho bất phương trình \(x^2-4x+2|x-3|-m< 0\). Tìm m để bất phương trình đã cho đúng với \(\forall x\in\left[1;4\right]\)