Với \(x\ge1\Rightarrow2x-1>0\)
BPT tương đương: \(m\ge\frac{2x+1}{2x-1}=1+\frac{2}{2x-1}\)
Để BPT có tập nghiệm \(x\ge1\Rightarrow m=\max\limits_{x\ge1}\left(1+\frac{2}{2x-1}\right)=3\)
Vậy \(m=3\)
Với \(x\ge1\Rightarrow2x-1>0\)
BPT tương đương: \(m\ge\frac{2x+1}{2x-1}=1+\frac{2}{2x-1}\)
Để BPT có tập nghiệm \(x\ge1\Rightarrow m=\max\limits_{x\ge1}\left(1+\frac{2}{2x-1}\right)=3\)
Vậy \(m=3\)
Tìm m để hệ bất phương trình có nghiệm :
\(\left\{{}\begin{matrix}2x-1>x+1\\2x-1>m\end{matrix}\right.\)
Tìm m để \(x\in\) [ \(0;+\infty\)) đều là nghiệm của bất phương trình \(\left(m^2-1\right)x^2-8mx+9-m^2\ge0\)
Tìm m để \(x\in\left[0;\infty\right]\) đều là nghiệm của bất phương trình \(\left(m^2-1\right)x-8mx+9-m^2\ge0\)
1.Bất phương trình (m2-3m)x+m<2-2x vô nghiệm khi:
a.m#1 b.m#2 c.m=2 d.=3
2.Gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2-m)x +m<6x-2
GIUP MÌNH VỚI Ạ
Tìm tập hợp tất cả các giá trị của m để bất phương trình \(x^2-2x-m\) nghiệm đúng với mọi x thuộc khoảng \([0,3]\)
A, \((-\infty,-1]\)
B, \([3.+\infty)\)
C, \([-1,+\infty)\)
D, \([-1,3]\)
Tập nghiệm của bất phương trình \(\dfrac{\text{x}-1}{\left(x-2\right)\left(x-3\right)}>0\) là:
A. \(\left(-\infty;1\right)\cup\left(3;+\infty\right)\) B. \(\left(1;2\right)\cup\left(3;+\infty\right)\)
C. \(\left(-\infty;1\right)\cup\left(2;3\right)\) D. \(\left(2;3\right)\)
Gọi S là tập hợp các giá trị nguyên của tham số m để bất phương trình \(\dfrac{x^2-2x+4}{x^2-\left(3m+2\right)x+4}>0\) nghiệm đúng với mọi x. Tìm số phần tử của S.
A. 0 B. 5 C. 2 D. 3
( HEPL ME! )
tìm giá trị của m để bất phương trình (m+1)x2-2(m+1)x+4<0 nghiệm đúng với mọi giá trị của x
Tìm m để các hệ bất phương trình sau : có nghiệm, vô nghiệm, có nghiệm duy nhất ( Làm cả 3 cái đó trong 1 hệ chứ không phải là chỉ làm 1 cái trong 1 hệ thôi đâu ! )
a) \(\left\{{}\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}x-1>0\\mx-3>0\end{matrix}\right.\) c) \(\left\{{}\begin{matrix}x+4m^2\le2mx+1\\3x+2>2x-1\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}7x-2\ge-4x+19\\2x-3m+2< 0\end{matrix}\right.\) e) \(\left\{{}\begin{matrix}mx-1>0\\\left(3m-2\right)x-m>0\end{matrix}\right.\)