Cho phương trình \(\left(m+1\right)16^x-2\left(2m-3\right)4^x+6m+5=0\) với m là tham số thực. Tập tất cả các giá trị của m để phương trình có 2 nghiệm trái dấu có dạng (a,b). Tính P=a.b
Cho 3 số a,b,c > 0 thỏa mãn a + b + c = 3
Chứng minh : \(\dfrac{a^2}{a+2b^2}+\dfrac{b^2}{b+2c^2}+\dfrac{c^2}{c+a^2}\ge1\)
giải bpt logarit đặt ẩn phụ
1, \(log_3x.log_2x< log_3x^2+log_2\dfrac{x}{4}\)
2, \(log_2\left(2^x-1\right).log_{\dfrac{1}{2}}\left(2^{x+1}-2\right)>-2\)
3, \(x^{lg^2x-3lgx+1}>1000\)
4, \(6^{log^2_6x}+x^{log_6x}\le12\)
làm hộ giùm mình nhé
Tìm tất cả các giá trị của m để phương trình \(m\sqrt{2+tan^2x}=m+tanx\) có ít nhất một nghiệm thực.
mọi người chỉ cách giúp e làm bài này với ạ
giải bất phương trình sau
bài 1: \(2^{2\sqrt{x+3}-x-6}+15\cdot2^{\sqrt{x+3}-5}\)∠\(2^x\)
Giải bất phương trình:
4^(3^x) < 3^(4^x)
Tìm điều kiện:
\(\sqrt{\log_{x} ((x^3)+1) \log_{x+1} (x+2)}\)
tìm m để bất phương trình sau có nghiệm
\(\begin{cases} (2x+1)[ln(x+1)-lnx]=(2y+1)[ln(y+1)-lny]\\ \sqrt{y-1} -2 \sqrt[4]{(y+1)(x-1)} +m\sqrt{x+1}=0 \end{cases}\)
Tìm a>1 để bất phương trình \(log_a\left(1-6a^{-x}\right)+2x-2\ge0\) nghiệm đúng với mọi x>2
giải bpt logarit đưa về cùng cơ số
1, \(2lg\left[\left(x-1\right)\sqrt{5}\right]>lg\left(x-5\right)+1\)
2, \(log_{\dfrac{1}{2}}\left[log_2\left(3^x+1\right)\right]>-1\)
3, \(log_x\dfrac{3x-1}{x^2+1}>0\)
4, \(\left(0,08\right)^{log_{0,5-x}x}\ge\left(\dfrac{5\sqrt[]{2}}{2}\right)^{log_{x-0,5}\left(2x-1\right)}\)
- Ai đó làm giúp với nhé