Bài 1: Nguyên hàm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Minh Hằng

Tìm họ nguyên hàm của hàm số lượng giác :

\(f\left(x\right)=\frac{1}{2\sin x+1}\)

Nguyễn Trọng Nghĩa
23 tháng 1 2016 lúc 9:04

Biến đổi f(x) về dạng :

\(f\left(x\right)=\frac{1}{2\left(\sin x+\frac{1}{2}\right)}=\frac{1}{2}\frac{1}{\sin x+\sin\frac{\pi}{6}}=\frac{1}{4}\frac{1}{\sin\frac{6x+\pi}{12}.\cos\frac{6x-\pi}{12}}\left(1\right)\)

Sử dụng đồng nhất thức :

\(1=\frac{\cos\frac{\pi}{6}}{\cos\frac{\pi}{6}}=\frac{\cos\left[\frac{6x+\pi}{12}-\frac{6x-\pi}{12}\right]}{\frac{\sqrt{3}}{2}}+\frac{2}{\sqrt{3}}\frac{\cos\left(\frac{6x+\pi}{12}\right).\cos\left(\frac{6x-\pi}{12}\right)+\sin\left(\frac{6x+\pi}{12}\right).\sin\left(\frac{6x-\pi}{12}\right)}{\sin\left(\frac{6x+\pi}{12}\right).\cos\left(\frac{6x-\pi}{12}\right)}\)

Ta được :

\(f\left(x\right)=\frac{2}{\sqrt{3}}\left[\int\frac{\cos\left(\frac{6x+\pi}{12}\right)}{\sin\left(\frac{6x+\pi}{12}\right)}dx-\int\frac{\sin\left(\frac{6x-\pi}{12}\right)}{\cos\left(\frac{6x-\pi}{12}\right)}\right]=\frac{2}{\sqrt{3}}\left(\ln\left|\sin\right|\left(\frac{6x+\pi}{12}\right)-\ln\left|\cos\right|\left(\frac{6x-\pi}{12}\right)\right)\)

\(=\frac{2}{\sqrt{3}}\ln\left|\frac{\sin\left(\frac{6x+\pi}{12}\right)}{\cos\left(\frac{6x-\pi}{12}\right)}\right|+C\)


Các câu hỏi tương tự
Nguyễn Minh Hằng
Xem chi tiết
Phạm Thái Dương
Xem chi tiết
Nguyễn Trọng Nghĩa
Xem chi tiết
Guyo
Xem chi tiết
Crackinh
Xem chi tiết
Phạm Thái Dương
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Crackinh
Xem chi tiết
nanako
Xem chi tiết