Đặt A=(2+x)5(3x-1)7
khai triển ta có:A=(\(_{k=0}^5\Sigma C_5^k2^{5-k}x^k\)).(\(^7_{i=0}\Sigma C_7^i\left(3x\right)^i\))
=\(\left(_{k=0}^5\Sigma\right)\left(_{i=0}^7\Sigma\right)\left(C_5^kC^i_7\right)\left(x^k.\left(3x\right)^i\right)\)
=số hạng\(\left(C_5^kC^i_7\right)\left(x^k.\left(3x\right)^i\right)\)chứa x5 tại k+i=5
có k\(\in\){0,1,2,...5},i\(\in\){0,1,2,...7}
=>(k,i)={(0,5);(1,4);(2,3);(3,2);(4,1);(5,0)}
=>Hệ số của x5 là:\(\left(C_5^0C^5_7\right)3^5\)+\(\left(C_5^1C^4_7\right)\left(3^4\right)\)+\(\left(C_5^2C^3_7\right)\left(3^3\right)\)+\(\left(C_5^3C^2_7\right)\left(3^2\right)\)+
\(\left(C_5^4C^1_7\right)\left(3^1\right)\)+\(\left(C_5^5C^0_7\right)3^0\)=30724
Hok tốt!!!
b) ta có (1+x-x2)8=(1+(x-x2))8
=\(^8_{k=0}\Sigma.C_8^k\left(x-x^2\right)^k\)=\(^8_{k=0}\Sigma.C_8^k\left(x-1\right)^kx^k\)=\(^8_{k=0}\Sigma.C_8^k\left(x-1\right)^kx^k\)