\(\int\dfrac{1}{2x+3}dx=\dfrac{1}{2}ln\left|2x+3\right|+C\)
ta có \(f\left(2\right)=\dfrac{1}{2}ln\left|2\times2+3\right|+C=\dfrac{1}{2}ln7+C=1\Leftrightarrow C=1-\dfrac{1}{2}ln7\)
\(\int\dfrac{1}{2x+3}dx=\dfrac{1}{2}ln\left|2x+3\right|+C\)
ta có \(f\left(2\right)=\dfrac{1}{2}ln\left|2\times2+3\right|+C=\dfrac{1}{2}ln7+C=1\Leftrightarrow C=1-\dfrac{1}{2}ln7\)
Hàm số nào bên dưới không là nguyên hàm của hàm số \(f\left(x\right)=\dfrac{x^2-1}{x^2}\)
A. F(x)=\(\dfrac{x^2-x+1}{x}\)
B. F(x)=\(\dfrac{x^2+1}{x}\)
C. F(x)=\(\dfrac{x^2+2x+1}{x}\)
D. F(x)\(=\dfrac{x^2-1}{x}\)
biet F(x) la mot nguyen ham cua f(x)=(2x-3)lnx va F(1)=0. Khi do phuong trinh 2F(x) + x^2- 6x +5=0 co bao nhieu nghiem
Tìm nguyên hàm của hàm số \(f\left(x\right)=\dfrac{x^2+2x}{x+1}\).
cho hàm số y = f(x) xác định và f(x) \(\ne0\) \(\forall x\in\left(0;+\infty\right)\), \(f'\left(x\right)=\left(2x+1\right)f^2\left(x\right)\) và f(1) = -1/2. Biết tổng f(1) + f(2) + f(3) + ... + f(2017) = a/b (a,b\(\in R\)) với a/b tối giản. Tìm a,b
tìm nguyên hàm F(x)của hàm số f(x)=\(\dfrac{x^{ }3+3x^{ }2+3x-1}{x^{ }2+2x+1_{ }}\) biết F(1)=1/3
Cho hàm số \(f\left(x\right)=\left\{{}\begin{matrix}2\sin^2x+1,x< 0\\2^x;x\ge0\end{matrix}\right.\). Giả sử \(F\left(x\right)\) là một nguyên hàm của hàm số \(f\left(x\right)\) trên \(R\) và thỏa mãn điều kiện \(F\left(1\right)=\dfrac{2}{ln2}\). Tính \(F\left(-\pi\right)\)
A. \(F\left(-\pi\right)=-2\pi+\dfrac{1}{ln2}\) B. \(F\left(-\pi\right)=-2\pi-\dfrac{1}{ln2}\)
C. \(F\left(-\pi\right)=-\pi-\dfrac{1}{ln2}\) D. \(F\left(-\pi\right)=-2\pi\)
Mình cần bài giải ạ, mình cảm ơn nhiều ♥
Cho hàm số \(y=f\left(x\right)\) có đạo hàm và liên tục trên \(\left[0;\dfrac{\pi}{2}\right]\)thoả mãn \(f\left(x\right)=f'\left(x\right)-2cosx\). Biết \(f\left(\dfrac{\pi}{2}\right)=1\), tính giá trị \(f\left(\dfrac{\pi}{3}\right)\)
A. \(\dfrac{\sqrt{3}+1}{2}\) B. \(\dfrac{\sqrt{3}-1}{2}\) C. \(\dfrac{1-\sqrt{3}}{2}\) D. 0
Cho hàm số f(x) liên tục trên \(\left(0;+\infty\right)\) thỏa mãn \(f\left(1\right)=\dfrac{1}{3}\) và \(2f\left(x\right)+x^2\dfrac{f'\left(x\right)}{f\left(x\right)}=3x,f\left(x\right)\ne0\) với mọi \(x\in\left(0;+\infty\right)\) . Biết \(\int_1^2f\left(x\right)dx=a+bln\left(2\right)\), \(\left(a,b\in R\right).\) Tính giá trị T=10a+3b
Câu 1. Cho hàm số chẵn y=f (x) liên tục trên R và \(\int\limits^1_{-1}\dfrac{f\left(2x\right)}{1+2^x}dx=8\).Tính \(\int_0^2f\left(x\right)dx\)
Câu 2:Cho hàm số y=f (x) có đạo hàm và liên tục trên [0;1]và thỏa f(0)=1.\(\int_0^1\left[f'\left(x\right)\left[f^2\left(x\right)\right]+1\right]dx=2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\).Tính\(\int_0^1\left[f^3\left(x\right)\right]dx\).