1) tính
a) \(\frac{4}{x+2}+\frac{3}{2-x}+\frac{12}{x^2-4}\)
b) \(x+\frac{x-1}{2}+\frac{x-2}{3}\)
c) \(\frac{1}{3x-2}-\frac{4}{3x+2}-\frac{3x-6}{4-9x^2}\)
d) x - 2 - \(\frac{x^2-10}{x+2}\)
e) \(\frac{1}{2x-2y}-\frac{1}{2x+2y}+\frac{y}{y^2-x^2}\)
f) \(\frac{1}{a+1}-\frac{3}{a^3+1}+\frac{3}{a^2-a+1}\)
g) \(\frac{4-2x+x^2}{x+2}-2-x\)
h)\(\frac{1}{x^3-x}-\frac{1}{x^2-x}+\frac{2}{x^2-1}\)
j) \(\frac{1}{2x+3}-\frac{1}{2x-3}+\frac{x-2}{2x^2-x-3}\)
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{3}{x\left(x^4+x^2+1\right)}\)
\(\frac{x+2}{x^2+2x+4}-\frac{x-2}{x^2-2x+4}=\frac{6}{x\left(x^4+4x^2+16\right)}\)
\(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}-\frac{1}{x}\) (a và b là hằng số , a và b khác 0)
Giải phương trình:
a. \(2+\frac{2x^2-8x}{2x^2+8x}+\frac{2x^2+7x+23}{2x^2+7x-4}=\frac{2x+5}{2x-1}\)
b.\(\frac{x^2+2x+1}{x^2+2x+2}+\frac{x^2+2x+2}{x^2+2x+3}=\frac{7}{6}\)
giải jùm vs
Rút gọn Pthức:
A= \(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2+x+1}\right)\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\)
Giải phương trình:
a) \(\frac{x+3}{x-2}-\frac{2x+3}{x+2}=\frac{2x^2+5x+12}{x^2-4}\)
b) \(\frac{2x+5}{x-3}+\frac{x-1}{x+3}=\frac{x^2+6x+18}{x^2-9}\)
Tinh
\(A=\left(\frac{x}{x+1}+\frac{1}{x-1}\right):\left(\frac{2x+2}{x-1}-\frac{4x}{x^2-1}\right)\)
\(B=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+5\)
Chứng minh đẳng thức:
a.\(\frac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}=\frac{a+1}{a+2}\)
b.\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{\left(x+1\right)^2}{x^2+1}\)
\(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right).\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x^2+2x}\) thực hiện phép tính
Thực hiện phép tính:
a) \(A=\frac{x^2-yz}{1+\frac{y+z}{x}}+\frac{y^2-zx}{1+\frac{z+x}{y}}+\frac{z^2-xy}{1+\frac{x+y}{z}}\)
b) \(B=\frac{2}{3}.\left[\frac{1}{1+\frac{\left(2x+1\right)^2}{3}}+\frac{1}{1+\frac{\left(2x-1\right)^2}{3}}\right]\)