\(A=\frac{1}{2}\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)+3\)
\(=\frac{1}{2}\left(a^2-2ab+b^2\right)+\frac{1}{2}\left(b^2-2bc+c^2\right)+\frac{1}{2}\left(c^2-2ca+a^2\right)+3\)
\(=\frac{1}{2}\left(a-b\right)^2+\frac{1}{2}\left(b-c\right)^2+\frac{1}{2}\left(c-a\right)^2+3\ge3\)
\(A_{min}=3\) khi \(a=b=c=1\)
\(B=-6\left(x^2-2.\frac{5}{12}x+\frac{25}{144}\right)+\frac{25}{24}\)
\(B=-6\left(x-\frac{5}{12}\right)^2+\frac{25}{24}\ge\frac{25}{24}\)
\(B_{min}=\frac{25}{24}\) khi \(x=\frac{5}{12}\)