\(A=\left(2x+\frac{1}{3}\right)^4-1\)
\(=\left[\left(2x+\frac{1}{3}\right)^2\right]^2-1\ge-1\)
Dấu " = "xảy ra khi và chỉ khi \(2x+\frac{1}{3}=0\)
\(2x=-\frac{1}{3}\)
\(x=-\frac{1}{6}\)
Vậy \(Min_A=-1\) khi và chỉ khi \(x=-\frac{1}{6}\)
\(A=\left(2x+\frac{1}{3}\right)^4-1\)
\(=\left[\left(2x+\frac{1}{3}\right)^2\right]^2-1\ge-1\)
Dấu " = "xảy ra khi và chỉ khi \(2x+\frac{1}{3}=0\)
\(2x=-\frac{1}{3}\)
\(x=-\frac{1}{6}\)
Vậy \(Min_A=-1\) khi và chỉ khi \(x=-\frac{1}{6}\)
Tìm GTNN của biểu thức
\(A=\left(2x+\frac{1}{3}\right)^2-1\)
a. tìm GTNN của biểu thức \(C=\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\)
b. tìm GTLN của biểu thức \(D=\frac{4}{\left(2x-3\right)^2+5}\)
Bài 1 : Tìm GTNN của biểu thức A= (2x + 1/3 ) 4 -1
Tìm GTNN hoặc GTLN của các biểu thức :
a,A=\(\left(2x-3\right)^2-\frac{1}{2}\)
b,B=\(\frac{1}{2}-\left|2-3x\right|\)
Tìm GTNN
B= -(\(\frac{3}{4}\) - \(\frac{1}{2}\) . /x + \(\frac{1}{3}\)/)
Tìm giá trị x để P \(\frac{x^2+x+1}{x^2+2x+1}\left(x\ne-1\right)\) đạt GTNN
Cho M=|x-\(\frac{1}{2}\)| + \(\frac{3}{4}\)
a) Tính M khi x-1
Tìm GTNN của M
Cho M=|x-\(\frac{1}{2}\)| + \(\frac{3}{4}\)
a) Tính M khi x=1
Tìm GTNN của M
Cho M=|x-\(\frac{1}{2}\)+ 3/4
a) Tính M khi x - 1
Tìm GTNN của M