Cho \(P=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
a, Rút gọn P
b, Tìm GTNN của P
Tìm GTLN, GTNN của \(P=\dfrac{x+4}{4\sqrt{x}}\)
Tìm GTLN, GTNN của \(P=\dfrac{x+3}{2\left(\sqrt{x}+1\right)}\) (x ≥ 0)
Tìm GTNN, GTLN của \(P=\dfrac{x-4}{\sqrt{x}+1}\)
cho x,y,z >2. tìm GTNN của \(P=\dfrac{x}{\sqrt{y+z-4}}+\dfrac{y}{\sqrt{x+z-4}}+\dfrac{z}{\sqrt{x+y-4}}\)
Tìm GTNN của hàm số \(Y=\dfrac{x^2+2x+33}{4x-4}\) với x>1
cho x,y thỏa mãn 1≤y≤2 và xy+2≥2y. tìm GTNN của \(M=\dfrac{x^2+4}{y^2+1}\)
Giải phương trình:
1, \(\left(x+3\right)\left(3x^4+8x^2+12x+21\right)=5\left(x^2+1\right)^3\)
2, \(3\left(x^2+2x-1\right)^2-2\left(x^2+3x-1\right)^2+5x^2=0\)
3, \(\dfrac{x^2+x+1}{x+1}+\dfrac{x^2+2x+2}{x+2}-\dfrac{x^2+3x+3}{x+3}-\dfrac{x^2+4x+4}{x+4}=0\)
4, \(\left(\dfrac{x+6}{x-6}\right)\left(\dfrac{x+4}{x-4}\right)^2+\left(\dfrac{x-6}{x+6}\right)\left(\dfrac{x+9}{x-9}\right)^2=2.\dfrac{x^2+36}{x^2-36}\)
cho x,y>0 và \(2x^2+2xy+y^2-2x\le8\). tìm GTNN của \(P=\dfrac{2}{x}+\dfrac{4}{y}-2x-3y\)
Tìm GTNN của \(P=\dfrac{x+3\sqrt{x-1}+1}{x+4\sqrt{x-1}+2}\) với x≥1
1. Cho P = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a) tìm x để P < \(\dfrac{-1}{2}\)
b) Tìm GTNN của P