Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Yên Lê Thanh

Tìm GTNN của biểu thức

A=|x-2011|+|x-2012|+|x-2013|+|x-2014|+|x-2015|

Windy
16 tháng 1 2018 lúc 12:30

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(A=\left|x-2011\right|+\left|x-2012\right|+\left|2014-x\right|+\left|2015-x\right|+\left|x-2013\right|\)

Ta có: \(\left\{{}\begin{matrix}\left|x-2011\right|\ge x-2011\\\left|x-2012\right|\ge x-2012\\\left|2014-x\right|\ge2014-x\\\left|2015-x\right|\ge2015-x\end{matrix}\right.\)

\(A\ge x-2011+x-2012+2014-x+2015-x+\left|x-2013\right|\)

\(A\ge6+\left|x-2013\right|\ge6\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}x\ge2011\\x\ge2012\\x\le2014\\x\le2015\end{matrix}\right.\)\(x=2013\)

\(\Rightarrow\left\{{}\begin{matrix}2012\le x\le2014\\x=2013\end{matrix}\right.\Leftrightarrow x=2013\)

Vậy....

Nguyễn Hương
25 tháng 2 2017 lúc 15:03

để Anhỏ nhất => x=2013 mình nghĩ thế thôi


Các câu hỏi tương tự
Yên Lê Thanh
Xem chi tiết
đào thị hoàng yến
Xem chi tiết
Bích Ngọc
Xem chi tiết
Bích Ngọc
Xem chi tiết
Bích Ngọc
Xem chi tiết
Bích Ngọc
Xem chi tiết
Nguyễn Như Quỳnh
Xem chi tiết
Cô Độc
Xem chi tiết
Đinh Gia Bảo
Xem chi tiết