\(A=x^2-4x+y^2-y+3\)
\(=\left(x^2-4x+4\right)+\left(y^2-y+\frac{1}{4}\right)+3-4-\frac{1}{4}\)
\(=\left(x^2-4x+4\right)+\left(y^2-y+\frac{1}{4}\right)-\frac{5}{4}\)
\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu "=" khi \(\begin{cases}\left(x-2\right)^2=0\\\left(y-\frac{1}{2}\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=\frac{1}{2}\end{cases}\)
Vậy MinA=\(-\frac{5}{4}\) khi \(\begin{cases}x=2\\y=\frac{1}{2}\end{cases}\)
bài này mà lop6 thi khó wa, cj nhẩm:
gtnn = -2 em thử làm xem, k dc cj tip