Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tran trung hieu

tìm GTNN của

a,A=x2+x+2018

b,B=2x2+2x+2019

c,C=x2-4x+20

d,D=x4-6x+40

Yukru
1 tháng 8 2018 lúc 14:50

a) \(A=x^2+x+2018\)

\(A=x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+2018\)

\(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{8071}{4}\)

\(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{8071}{4}\ge\dfrac{8071}{4}\)

=> Amin = 8071/4 <=> x + 1/2 = 0

=> x = -1/2

Vậy Amin = 8071/4 <=> x = -1/2

b) \(B=2x^2+2x+2019\)

\(B=2\left(x^2+2x.\dfrac{1}{2}+\dfrac{2019}{2}\right)\)

\(B=2\left(x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+\dfrac{2019}{2}\right)\)

\(B=2\left(x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{4037}{4}\right)\)

\(B=2\left(x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{4037}{2}\)

\(B=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{4037}{2}\)

\(2\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow2\left(x+\dfrac{1}{2}\right)^2+\dfrac{4037}{2}\ge\dfrac{4037}{2}\)

=> Bmin = 4037/2 <=> x + 1/2 = 0

=> x = -1/2

Vậy Bmin = 4037/2 <=> x = -1/2

c) \(C=x^2-4x+20\)

\(C=x^2-2.x.2+2^2+16\)

\(C=\left(x-2\right)^2+16\)

\(\left(x-2\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-2\right)^2+16\ge16\)

=> Cmin = 16 <=> x - 2 = 0

=> x = 2

Vậy Cmin = 16 <=> x = 2

d) Bài d mình chưa nghĩ ra, sorry vì kiến thức mình không rộng bucminh


Các câu hỏi tương tự
Athena
Xem chi tiết
Xem chi tiết
Thuongphan
Xem chi tiết
nguyễn thị thương
Xem chi tiết
minh trang
Xem chi tiết
Thiên Yết
Xem chi tiết
Nguyễn Ngọc Hà
Xem chi tiết
Thỏ Nghịch Ngợm
Xem chi tiết
Nguyễn Ngọc Hà
Xem chi tiết