Tìm GTNN của biểu thức: \(A=4x+\frac{1}{4x}-\frac{4\sqrt{x}+3}{x+1}+2020\) với x>0
Tìm x :
h/ \(\sqrt{x+5}-10=-4\)
i/ \(\sqrt{x-5}+2\sqrt{4x-20}-\frac{1}{3}\sqrt{9x-45}=12\)
j/ \(3\sqrt{2x}+\frac{1}{7}\sqrt{98x}-\sqrt{72x}+4=0\)
k/ \(\sqrt{4x^2-20}-\frac{1}{3}\sqrt{x^2-5}+\sqrt{\frac{9x^2-45}{16}}-\frac{1}{2}\sqrt{\frac{25x^2-125}{36}}=4\)
l/ \(\sqrt{4x+4}+\sqrt{9x+9}-\sqrt{x+1}=4\)
m/ \(\sqrt{16\left(x+1\right)}+\sqrt{4x+4}=16-\sqrt{x+1}+\sqrt{9x+9}\)
Giúp mk với nhé mn
Với x,y là các số thực thỏa mãn điều kiện \(\left(2+x\right)\left(y-1\right)=\frac{9}{4}\). Tìm gtnn của biểu thức
\(A=\sqrt{x^4+4x^3+6x^2+4x+2}+\sqrt{y^4-8y^3+24y^2-32y+17}\)
Cho x,y thỏa mãn x>1, y<0 và \(\frac{\left(x+y\right)\left(x^3-y^3\right)\sqrt{4x-2\sqrt{4x-1}}}{\left(1-\sqrt{4x-1}\right)\left(x^2y^2+xy^3+y^4\right)}=-8\). Vậy \(\frac{x}{y}=\)
1 Cho P=\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)(0<x≠1)
a) Rút gọn
b) Tính GTLN của Q=\(P-9\sqrt{x}+2019\)
2
a) Giải pt: \(x-1+4\sqrt{4-x}=4\sqrt{x-1}+\sqrt{\left(7-x\right)\left(x-1\right)}\)
b) Cho a,b số thực a≠0
CM: \(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{a}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
c) Cho a, b, c là 3 số dương
CM: \(\frac{1}{a\left(a^2+8bc\right)}+\frac{1}{b\left(b^1+8ac\right)}+\frac{1}{c\left(c^2+8ab\right)}\le\frac{3}{3abc}\)
Dấu "=" xảy ra khi nào?
4
a) Tìm các số tự nhiên n sao cho n-50 và n+50 đều là số chính phương
b) Tìm số nguyên P,q sao cho
\(P^2=8q+1\)
5 Giải pt \(2\left(x^2-4x\right)+\sqrt{x^2-4x-5}-13=0\)
6 Cho 3 số thực x, y, z thỏa \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge z\)
Tìm GTNN của P=xyz
cho x>0, tìm GTNN của bt
\(A=4x+\dfrac{1}{4x}-\dfrac{4\sqrt{x}+3}{x+1}+2017\)
Cho bt A = \(\frac{\sqrt{x}-1}{\sqrt{x}+1}\). tìm GTNN của biểu thức: Q = \(\frac{A}{-x+3\sqrt{x}-2}\) với 0 =<x<4
1/ Rút Gọn với x > 0, x ≠ 1
A = \(\left(\frac{2+\sqrt{x}}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\left(\frac{x\sqrt{x}+x-\sqrt{x}-1}{\sqrt{x}}\right)\)
2/ Giải Phương Trình
a) \(\sqrt{4x-\sqrt{32}}+\sqrt{x-\sqrt{2}}=12\)
b) \(\sqrt{4x-1}+\sqrt{9x-\frac{9}{4}}=15\)
c) \(\sqrt{x^2+x-5}=\sqrt{x-1}\)
d) \(\sqrt{2x^2+3x-13}=x-1\)
3/ Tìm giá trị nhỏ nhất: A = x - \(\sqrt{x}+2\)
4/ Tìm giá trị lớn nhất: B = 3\(\sqrt{x}\) - x + 1
a. A=(\(\frac{3x+16\sqrt{x}-7}{x+2\sqrt{x}-3}-\frac{\sqrt{x}+1}{\sqrt{x}+3}-\frac{\sqrt{x}+7}{\sqrt{x}-1}\)) : (\(2-\frac{\sqrt{x}}{\sqrt{x}-1}\))
b. B=(\(\frac{\sqrt{x}+1}{\sqrt{xy}+1}+\frac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\)) :( 1-\(\frac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\frac{\sqrt{x}+1}{\sqrt{xy}+1}\))
c. C=( \(\frac{\sqrt{x}-4x}{1+4x}-1\)):(\(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}}-1\))
d. D=(\(\frac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a+b}}+\frac{a-b}{\sqrt{a^2-b^2}-a+b}\))\(\frac{a^2+b^2}{\sqrt{a^2-b^2}}\)
e. E=\(\frac{\left(\sqrt{a}-\sqrt{b}\right)+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}-b\)