Ta có : \(A=\sqrt{x^2-8x+20}-12=\sqrt{\left(x-4\right)^2+4}-12\)
Do \(\left(x-4\right)^2\ge0\Rightarrow\left(x+4\right)^2+4\ge4\left(\forall x\right)\)
\(\Rightarrow\sqrt{\left(x-4\right)^2+4}\ge\sqrt{4}\)
\(\Rightarrow\sqrt{\left(x-4\right)^2+4}\ge2\)
\(\Rightarrow\sqrt{\left(x-4\right)^2+4}-12\ge2-12\)
\(\Rightarrow\sqrt{\left(x-4\right)^2+4}-12\ge-10\)
\(\rightarrow A\ge-10\)
Dấu "=" xảy ra khi ( x - 4 )2 =0
Suy ra x - 4 = 0 \(\rightarrow\) x = 4 .
Vậy GTNN của A là -10 khi x = 4 .