Tìm GTNN:
A=\(\sqrt{25-10x+x^2}-\sqrt{x^2-6x+9}\)
B:\(\dfrac{1}{2x^2-x+3}\)
C: x2 - 2xy + 3y2 - 2x + 2017
D: x-\(\sqrt{x-2015}\)
E:\(\dfrac{2x+1}{x^2}\)
F: \(\dfrac{5x^2-4x+4}{x^2}\)
G=(x+1)(x+2)2(x+3)
H= X2-5x+y2+xy-4y+2014
I= x2 +xy +y2-3x-3y +2002
K=\(\sqrt{x^2-6x+2y^2+4y+11}+\sqrt{x^2+2x+3y^2+6y+4}\)
rút gọn các biểu thức sau
a)x-2y-\(\sqrt{x^2-4xy+4y^2}\) d)\(\sqrt{\dfrac{x^4-4x^2+4}{x^2-2}}\)
B)\(x^2+\sqrt{x^4-8x^2+16}\) e)\(\sqrt{\left(x^2-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)
C)\(2x-1-\sqrt{\dfrac{x^2-10x+25}{x-5}}\)
a) √x^2-2x+4 = 2x - 2 b) √x^2-6x+9+x = 13 c) √x^2-3x +2 = √x-1 d) √x^2-4x+4 = ✓4x^2 e) 4x^2-4x+1 = √x-8x+16
a)A=\(\sqrt{49a^2}+3a\) với a>=0
b)B=\(\sqrt{16a^4}+6a^2\)
c)C=\(4x-\sqrt{\left(x^2-4x+4\right)}\) với x<2
d)D=\(\dfrac{a-b}{\sqrt{a}-\sqrt{b}}\) với a,b >0 ;a#b
e)E=\(\sqrt{y^2+6y+9}-\sqrt{y^2-6y+9}\) với y tuỳ ý
giải phương trình
1/\(\sqrt{x^2}-4x+8\) +\(\sqrt{x^2-4x+13}=17-2x^2+8x\)
2/\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x-24}=4-2x-x^2\)
Tìm x,y để biểu thức A đạt giá trị nhỏ nhất
\(A=\sqrt{x^2+2y^2-6x+4y+11}+\sqrt{x^2+3y^2+2x+6y+4}\)
Giải các phương trình sau:
a)\(\sqrt{x^2-2x+1}=x^2-1\)
b)\(\sqrt{4x^2-4x+1}=x-1\)
c)\(\sqrt{x^4-2x^2+1}=x-1\)
d)\(\sqrt{x^2+x+\dfrac{1}{4}}=x\)
e)\(\sqrt{x^4-8x^2+16}=2-x\)
f)\(\sqrt{9x^2+6x+1}=\sqrt{11-6\sqrt{2}}\)
Mọi người giúp em gấp với!!!!!!!!!!
giải phương trình
a)\(\sqrt{x^2-6x+9}=4\)
b)\(\sqrt{4x^2-4x+1}=5x+3\)
c)\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
d)\(\sqrt{x^2+2x+1}+\sqrt{x^2-4x+4}=3\)
e)\(\sqrt{9x^2-12x+4}=\sqrt{x^2-10x+25}\)
1. Giải các phương trình sau
căn x^2-2x+1 + căn x^2-4x+4 = 3
2. Tìm giá trị nhỏ nhất của các biểu thức sau
a, P= (căn 4x^2-4x+1) + (căn 4x^2-12x+9)
b, Q= (căn 49x^2-42x+9) + (căn 49x^2+42x+9)