Giải các PT sau:
a)\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
b)\(\sqrt{x-\sqrt{4x-4}}+\sqrt{x+\sqrt{4x-4}}=2\)
Giải phương trình
a) \(\sqrt{x-2}=\sqrt{x^2-4x+3}\)
b) \(2\left(\sqrt{\dfrac{x-1}{4}}-3\right)=2\sqrt{\dfrac{4x-4}{9}}-\dfrac{1}{3}\)
c) \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
d) \(4+\sqrt{2x+6-6\sqrt{2x-3}}=\sqrt{2x-2+2\sqrt{2x-3}}\)
Giải phương trình:
1. \(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
2. \(\dfrac{4}{x}+\sqrt{x-\dfrac{1}{x}}=x+\sqrt{2x-\dfrac{5}{x}}\)
3. \(\dfrac{6-2x}{\sqrt{5-x}}+\dfrac{6+2x}{\sqrt{5+x}}=\dfrac{8}{3}\)
4. \(x^2+1-\left(x+1\right)\sqrt{x^2-2x+3}=0\)
5. \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)
6. \(\left(2x+7\right)\sqrt{2x+7}=x^2+9x+7\)
Rút gọn biểu thức: \(A=\left(\dfrac{4x+4}{2\sqrt{2x^3}-8}-\dfrac{\sqrt{2x}}{2x+2\sqrt{2x}+4}\right)\left(\dfrac{1+2\sqrt{2x^3}}{1+\sqrt{2x}}\right)\)
Giải pt : a) \(\sqrt[3]{x^2-1}+x=\sqrt{x^3-1}\)
b) \(\sqrt{2x^2+3x+5}+\sqrt{2x^2-3x+5}=3x\)
c) \(2x^2-11x+2x=3\sqrt[3]{4x-4}\)
Giải các phương trình sau:
a, \(\left(x-3\right)^2+x^4=-y^2+6y-4\)
b, \(\sqrt{2x-3}+\sqrt{5-2x}-x^2+4x-6=0\)
c, \(4+4x-x^2=|x-1|+|x-2|+|2x-3|+|4x-14|\)
d, \(x^2-2x+3=\sqrt{2x^2-x}+\sqrt{1+3x-3x^2}\)
giải bất phương trình \(\left(\sqrt{13}-\sqrt{2x^2-2x+5}-\sqrt{2x^2-4x+4}\right)\left(x^6-x^3+x^2-x+1\right)\ge0\)
Cho x=\(\dfrac{1}{2}\sqrt{\dfrac{\sqrt{2}-1}{\sqrt{2}+1}}\). Tính A=(4x5+4x4-x3+1)19+\(\sqrt{4x^5+4x^4-5x^3+5x}\)+\(\left(\dfrac{1-\sqrt{2}x}{\sqrt{2x^2+2x}}\right)^{2019}\)
Giai cac pt:
a, \(2x^2-8x+\sqrt{x^2-4x-5}=13\)
b, \(\sqrt{1-x}+\sqrt{4+x}=3\)
c, \(x^3+4x+5=2\sqrt{2x+3}\)
d, \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2-16}\)
e, \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)