1) Cho a^3+b^3+c^3=3abc và abc khác 0. Tính giá trị của P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
2) Tính giá trị biểu thức A= \(\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)
với a khác b, hoặc b khác c, hoặc c khác a
3) Tính giá trị biểu thức B= \(\frac{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}\)
với x khác y, hoặc y khác z, hoặc z khác x
4) Tính giá trị biểu thức C= \(\frac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{3\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
với x khác y; y khác z; z khác x
Bài 1: Giải các phương trình:
a) \(x+\frac{2x-1}{1-x}=-1\)
b) \(x+\frac{1}{x}=2\)
Bài 2: Giải các phương trình:
a) \(\frac{x}{x-2}=\frac{x-2}{x-3}\)
b) \(\frac{2x-4}{x-1}-\frac{x-3}{x-2}=1\)
c) \(\frac{x+3}{x-1}-\frac{3}{X-1}+\frac{x^2-2}{1-x^2}=0\)
d) \(\frac{2x+1}{x-3}-\frac{3}{x-2}=2\)
Bài 3: Giải các phương trình sau:
a) \(\frac{2x}{x-1}-\frac{x}{x-2}=\frac{x^2}{\left(x-1\right)\left(x-2\right)}\)
b) \(\frac{1}{x+2}\frac{6}{x-1}+\frac{8}{\left(x+2\right)\left(x-1\right)}=0\)
c) \(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x+3\right)\left(x-1\right)}\)
d) \(\frac{x-1}{x+2}-\frac{x+1}{x-2}=\frac{x-3}{4-x^2}\)
a, Tìm GTNN của biểu thức:
A=x2+2y2+2xy+2x-4y+2017
b, Cho x,y>0 Cmr \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+3\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
A=\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+...+\frac{1}{\left(x+9\right)\left(x+100\right)}\)
thực hiện phép tính
a,\(x^3+\left[\frac{x\left(2y^3-x^3\right)}{x^3+y^3}\right]^3-\left[\frac{y\left(2x^3-y^3\right)}{x^3+y^3}\right]^3\)
b,\(\frac{\frac{x\left(x+y\right)}{x-y}+\frac{x\left(x+z\right)}{x-z}}{1+\frac{\left(y-z\right)^2}{\left(x-y\right)\left(x-z\right)}}+\frac{\frac{y\left(y+z\right)}{y-z}+\frac{y\left(y+x\right)}{y-x}}{1+\frac{\left(z-x\right)^2}{\left(y-z\right)\left(y-x\right)}}+\frac{\frac{z\left(z+x\right)}{z-x}+\frac{z\left(z+y\right)}{z-y}}{1+\frac{\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}}\)
c,\(\left[\frac{y+z-2x}{\frac{\left(y-z\right)^3}{y^3-z^3}+\frac{\left(x-y\right)\left(x-z\right)}{y^2+yz+z^2}}+\frac{z+x-2y}{\frac{\left(z-x\right)^3}{z^3-x^3}+\frac{\left(y-z\right)\left(y-x\right)}{z^2+xz+x^2}}+\frac{x+y-2z}{\frac{\left(x-y\right)^3}{x^3-y^3}+\frac{\left(z-x\right)\left(z-y\right)}{x^2+xy+y^2}}\right]:\frac{1}{x+y+z}\)
a) \(\frac{5x-3}{50x^2-2}+\frac{5x-9}{12x-60x^2}+\frac{1}{12x}=\frac{8x-5}{80x^2+16x}\)
b) \(\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+9\right)}=\frac{1}{3}\left(27-\frac{1}{x+9}\right)\)
Bạn nào làm giúp mình với ạ!
#Cảm ơn nhiều! :)
Bài 3 : Giải các phương trình sau bằng cách đưa về dạng ax+b=0 :
a) \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
b) \(4\left(0,5-1,5x\right)=-\frac{5x-6}{3}\)
c) \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
d) \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
e) \(\frac{1}{4}\left(x+3\right)=3-\frac{1}{2}\left(x+1\right)-\frac{1}{3}\left(x+2\right)\)
a, (x-1)3 - x(x-1)2 = 5(2-x) - 11(x+2)
b, (x-2)3 + (3x-1)(3x+1) = (x+1)3
c, \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{5}\)
d, \(\frac{2\left(x-3\right)}{7}+\frac{x-5}{3}=\frac{13x+4}{21}\)
e, \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
Cho biểu thức
A=\(\left[\frac{3\left(x+2\right)}{2\left(x^3+x^2+x+1\right)}+\frac{2x^2-x-10}{2\left(x^3-x^2+x-1\right)}\right]:\left[\frac{5}{x^2+1}+\frac{3}{2\left(x+1\right)}-\frac{3}{2\left(x+1\right)}\right]\)