\(-1\le sin\left(x^2\right)\le1\Rightarrow\sqrt{2}\le\sqrt{3-sin\left(x^2\right)}\le2\)
\(\Rightarrow2+\sqrt{2}\le y\le4\)
\(y_{min}=2+\sqrt{2}\) khi \(sin\left(x^2\right)=1\)
\(y_{max}=4\) khi \(sin\left(x^2\right)=-1\)
\(-1\le sin\left(x^2\right)\le1\Rightarrow\sqrt{2}\le\sqrt{3-sin\left(x^2\right)}\le2\)
\(\Rightarrow2+\sqrt{2}\le y\le4\)
\(y_{min}=2+\sqrt{2}\) khi \(sin\left(x^2\right)=1\)
\(y_{max}=4\) khi \(sin\left(x^2\right)=-1\)
Tìm GTLN, GTNN của các hàm số :
a) \(y=sin\left(1-x^2\right)\)
b) \(y=cos\sqrt{2-x^2}\)
Tìm GTNN và GTLN của hàm số sau:
1.\(y=cosx+cos\left(x-\dfrac{\pi}{3}\right)\)
2.\(y=sin^4x+cos^4x\)
3.\(y=3-2\left|sinx\right|\)
tìm gtln-gtnn của hàm số :
\(y=\sqrt{cos\left(x^3\right)+2}+3\)
\(y=sin\dfrac{x}{2}.cos\dfrac{x}{2}-3\)
\(y=\sqrt{2sin^2x+1}-5\)
tìm giá trị lớn nhất và nhỏ nhất của mỗi hàm số sau : a) y = \(\sqrt{1-\sin\left(x^2\right)}-1\) ; b) y = \(4\sin\sqrt{x}\).
Tìm txđ của hàm số sau:
1.\(y=\sqrt{\dfrac{1+cosx}{1-cosx}}\)
2.\(y=\dfrac{3}{sin^2x-cos^2x}\)
3.\(y=cos\left(x-\dfrac{\pi}{3}\right)+tan2x\)
tìm giá trị lớn nhất và nhỏ nhất của mỗi hàm số sau : a) y = \(\sqrt{1-\sin\left(x^2\right)}-1\) ; b) y = \(4\sin\sqrt{x}\).
tìm giá trị lớn nhất và nhỏ nhất của mỗi hàm số sau : a) y = \(\sqrt{1-\sin\left(x^2\right)}-1\) ; b) y = \(4\sin\sqrt{x}\).
Xét tính chẵn lẻ của hàm số sau:
a) \(y=x^2sin\left(x+3\right)\)
b) \(\sqrt{2-sin^23x}\)
Tìm GTLN và GTNN:
1.\(y=\sqrt{5-2cos^2x.sin^2x}\)
2.\(y=1+\dfrac{1}{2}sin2x.cos2x\)
3.\(y=\sqrt{1+sinx}-3\)
4.\(y=\sqrt{2+sin^22x}\)