cos2x=1-2sin2x
y=3+2sin2x-1-3sinx
y=2sin2x-3sinx+2
y=2(sin2x-\(\dfrac{3}{2}\)x+1)
y=2.(sin2x-2.1.\(\dfrac{3}{4}\).sinx+\(\dfrac{9}{16}\)+\(\dfrac{7}{16}\))
y=2.[sin2x-2.1.\(\dfrac{3}{4}\).sinx+(\(\dfrac{3}{4}\))2 ]+\(\dfrac{7}{8}\)
y=2.(sinx-\(\dfrac{3}{4}\))2+\(\dfrac{7}{8}\)
Ta có:
-1\(\le\)sinx\(\le\)1
\(\dfrac{-7}{4}\)\(\le\)sinx-\(\dfrac{3}{4}\)\(\le\)1/4
0\(\le\)(sinx-\(\dfrac{3}{4}\))2\(\le\)1/16
0\(\le\)2(sinx-\(\dfrac{3}{4}\))2\(\le\)1/8
7/8\(\le\)2(sinx-\(\dfrac{3}{4}\))2+7/8\(\le\)1
7/8\(\le\)y\(\le\)1
=>miny=7/8<=>sinx-3/4=0<=>\(\left\{{}\begin{matrix}x=arcsin\dfrac{3}{4}+k2\Pi\\x=\Pi-arcsin\dfrac{3}{4}+k2\Pi\end{matrix}\right.\)
maxy=1<=>sinx=1<=>x=\(\dfrac{\Pi}{2}\)+k2\(\Pi\)