\(A=\frac{12}{\left(x+1\right)^2+2}\)
Ta có
\(\left(x+1\right)^2\ge0\) Với mọi x
\(\Rightarrow0>\left(x+1\right)^2+2\ge2\)
\(\Rightarrow\frac{1}{\left(x+1\right)^2+2}\le\frac{1}{2}\)
\(\Rightarrow\frac{12}{\left(x+1\right)^2+2}\le\frac{12}{2}\)
\(\Rightarrow A\le6\)
Dấu " = ' xay ra khi \(x=-1\)
Vậy MAXA=6 khi \(x=-1\)