Lim \(\frac{2^n+3^n}{3-4\cdot3^{n+1}}\)
lim \(\frac{4^{n+1}+10^n}{3^n-4\cdot10^{n+1}}\)
lim \(\frac{3^n\cdot4^n-2^n}{12^n+5\cdot3^{n+2}}\)
lim \(\frac{\left(-2\right)^n+3^n}{\left(-2\right)^{n+1}-4\cdot3^{n+1}+2}\)
lim \(\frac{3^n-11}{1+7\cdot2^{n+1}}\)
lim \(\frac{2^n-3\cdot5^n+1}{3\cdot2^n+7\cdot4^{n+1}}\)
a) \(lim\frac{\left(-2\right)^n+3^n}{\left(-2\right)^{n+1}+3^{n+1}}\)
b) \(lim\frac{\left(2n-1\right)\left(n+1\right)\left(3n+4\right)}{\left(5-6n\right)^3}\)
c) \(lim\left(\sqrt{n^2+5n+1}-\sqrt{n^2-2}\right)\)
d) \(lim\frac{5\cdot3^n-6^{n+1}}{4\cdot2^n+6^n}\)
e) \(lim\left(-2n^3-3n^2+5n-2020\right)\)
tính các giới hạn sau:
a, lim\(\frac{3.2^n-8.7^n}{4.3^n+5.7^n}\)
b, lim\(\frac{2^{n+1}\left(3.2^n-3^{n-2}\right)}{3^n\left(2^{n-1}+4\right)}\)
c, lim\(\frac{\left(-3\right)^n+2.5^n}{1-5^n}\)
d, lim\(\frac{1+2+3+...+n}{n^2+n+1}\)
tìm các giới hạn
a)lim(\(\sqrt{n+1}-\sqrt{n}\))
b)lim\(\left(\sqrt{n+5n+1}-\sqrt{n^2-n}\right)\)
c)lim\(\left(\sqrt{3n^2+2n-1}-\sqrt{3n^2-4n+8}\right)\)
d)lim\(\frac{2^n+6^n-4^{n+1}}{3^n+6^{n+1}}\)
e)lim\(\frac{3^n-4^n+5^n}{3^n+4^n-5^n}\)
f)lim\(\frac{1+3+5+.....+\left(2n+1\right)}{3n^2+4}\)
g)lim[\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{n\left(n+1\right)}\)]
h)lim\(\frac{1^2+2^2+3^2+.....+n^2}{n\left(n+1\right)\left(n+2\right)}\)
tính giới hạn sau
a, lim\(\frac{1}{\sqrt{n+2}-\sqrt{n+1}}\)
b, lim\(\frac{8^{2n+3}-3^{3n+2}}{4^{3n+4}+5^{2n+3}}\)
tính tổng CSN: \(1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},...,\left(-\frac{1}{2}\right)^{n-1},...\)
tính tổng S= \(1+0,9+\left(0,9\right)^2+\left(0,9\right)^3+...+\left(0,9\right)^{n-1}+...\)
17/lim\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\right)\)
18/lim\(\frac{1+a+a^2+...+a^n}{1+b+b^2+...+b^n}\left(\left|a\right|< 1;\left|b\right|< 1\right)\)
19/lim\(\frac{1-2+3-4+...+\left(2n-1\right)-2n}{2n+1}\)
Tìm các giới hạn sau:
a) \(lim\left(4^n-3^n\right)\)
b) \(lim\left[\left(2^n+1\right)^2-4^n\right]\)
c) \(lim\left(\sqrt{2n^5-3n^2+11}-n^3\right)\)
d) \(lim\left(\sqrt{2n^2+1}-\sqrt{3n^2-1}\right)\)
e) \(lim\sqrt{n^2+3n\sqrt{n}+1}-n\)
Giới hạn vô cực
1.Tìm lim\(\frac{\sqrt{4n^2+n-1}+n}{\sqrt{n^4_{ }2n^3-1}-n}\)
2. Tìm lim \(\left(-2n^2+4\right)^3\)
3. Cho dãy số (un): \(\left\{{}\begin{matrix}u1=-1\\un+1=un+3\end{matrix}\right.\)
Tính : lim\(\frac{un}{5n+2020}\)
4. Cho dãy số (un):
\(\left\{{}\begin{matrix}un=1\\un+1=\frac{1}{2}\end{matrix}\right.un+\frac{3}{2}\). Tìm giới hạn dã số (un)
5. Cho dãy số (un):
\(\left\{{}\begin{matrix}u1=2\\un+1=un+\frac{1}{2^n}\end{matrix}\right.\)
Tìm lim(un-2)
Cho m và n là các hệ số nguyên dương \(\ge2\) và khác nhau. Tìm giới hạn sau :
\(L=\lim\limits_{x\rightarrow0}\frac{\left(1+mx\right)^n-\left(1+nx\right)^m}{x^2}\left(1\right)\)