TS: \(1+3+5+...+(2n+1)\)
Số số hạng là: \(\left[\left(2n+1\right)-1\right]:2+1=n+1\)
Số cặp: \(\dfrac{n+1}{2}\)
Giá trị 1 cặp: \((2n+1)+1=2n+2\)
\(\rightarrow\)\(TS=\dfrac{n+1}{2}.(2n+2)=(n+1)^2\)
\(\lim \dfrac{{{{\left( {n + 1} \right)}^2}}}{{3{n^2} + 4}} = \lim \dfrac{{{n^2} + 2n + 1}}{{3{n^2} + 4}} = \lim \dfrac{{1 + \dfrac{2}{n} + \dfrac{1}{{{n^2}}}}}{{3 + \dfrac{4}{{{n^2}}}}} = \dfrac{1}{3}\)