\(a,ĐK:\dfrac{-5}{x^2+6}\ge0\Leftrightarrow x\in\varnothing\)
( Do \(-5< 0;x^2+6>0\Leftrightarrow\dfrac{-5}{x^2+6}< 0,\forall x\))
\(b,ĐK:\dfrac{3x-2}{\left(x-1\right)^2+3}\ge0\\ \Leftrightarrow3x-2\ge0\left[\left(x-1\right)^2+3>0\right]\\ \Leftrightarrow x\ge\dfrac{2}{3}\)
a) ĐKXĐ: \(x^2+6< 0\left(VLý.do.x^2+6\ge6>0\right)\)
Vậy biểu thức k xác định với mọi x
b) \(\sqrt{\dfrac{3x-2}{x^2-2x+4}}=\sqrt{\dfrac{3x-2}{\left(x-1\right)^2+3}}\)
ĐKXĐ: \(\left\{{}\begin{matrix}3x-2\ge0\\\left(x-1\right)^2+3\ne0\left(đúng\forall x\right)\end{matrix}\right.\)
\(\Leftrightarrow x\ge\dfrac{2}{3}\)