Ôn tập: Bất phương trình bậc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồ Tiến Đức

Tìm giá trị \(Q=\dfrac{x^2+x+1}{x^2+2x+1}\) đạt min

Ngô Thanh Sang
11 tháng 7 2017 lúc 17:05

Ta có: \(Q=\dfrac{x^2+x+1}{x^2+2x+1}\)

\(\Rightarrow\dfrac{1}{Q}=\dfrac{x^2+2x+1}{x^2+x+1}\)

Để Q min thì \(\dfrac{1}{Q}\) max

\(\dfrac{1}{Q}=\dfrac{x^2+2x+1}{x^2+x+1}=1+\dfrac{x}{x^2+x+1}\)

\(=1+\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{-x^2+2x+1}{x^2+x+1}=\dfrac{4}{3}-\dfrac{1}{3}.\dfrac{\left(-x-1\right)^2}{x^2+x+1}\le\dfrac{4}{3}\)

( Vì mẫu > 0 và tử \(\ge0\) )

\(\Rightarrow\dfrac{1}{Q}\) đạt GTNN là \(\dfrac{4}{3}\) khi x =1

Vậy Q đạt GTNN là \(\dfrac{3}{4}\) khi x = 1

Ngô Thanh Sang
11 tháng 7 2017 lúc 17:17

Ta có: \(\dfrac{a+b}{a}=\dfrac{a}{b}\)

\(\Leftrightarrow\dfrac{a}{b}-1-\dfrac{1}{\dfrac{a}{b}}=0\)

\(\Leftrightarrow\left(\dfrac{a}{b}\right)^2-\dfrac{a}{b}-1=0\)

\(\Leftrightarrow\left(\dfrac{a}{b}-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{\sqrt{5}+1}{2}\\\dfrac{a}{b}=\dfrac{-\sqrt{5}+1}{2}\end{matrix}\right.\)

Thế \(\dfrac{a}{b}\) vào PT \(x^2-x-1\)

\(\Rightarrowđpcm\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Hoàng Anh Thư
Xem chi tiết
Phương
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nya arigatou~
Xem chi tiết
Lê Minh Hưng
Xem chi tiết
Sakura Nguyen
Xem chi tiết
leduythai
Xem chi tiết
phạm ngọc mai
Xem chi tiết