+) GTLN
\(\left(2\sqrt{x-4}+\sqrt{8-x}\right)^2\le\left(2^2+1^2\right)\left(x-4+8-x\right)=20\) ( Bunyacovski)
\(\Rightarrow f\left(x\right)\le\sqrt{20}\)
Dấu "=" \(\Rightarrow x=\frac{36}{5}\)
+)GTNN (Sd Cô-si \(a+b\ge2\sqrt{ab}\) và \(\sqrt{ab}\ge\frac{2}{a+b}\) )
\(\frac{f\left(x\right)}{2}=\sqrt{x-4}+\frac{\sqrt{8-x}}{2}\ge2\sqrt{\frac{\sqrt{x-4}\cdot\sqrt{8-x}}{4}}\ge2\sqrt{\frac{\frac{2}{x-7+8-x}}{4}}=1\)
\(\Leftrightarrow f\left(x\right)\ge2\)
Dấu "=" => x= 4