\(3x^2+6x-1=3\left(x^2+2x+1\right)-4=3\left(x+1\right)^2-4\ge-4\)
Min B = -4 <=> x = -1
Ta có : \(B=3x^2+6x-1\)
\(=3.\left(x^2+2x+1\right)-4\)
\(=3.\left(x+1\right)^2-4\)
Ta có : \(3.\left(x+1\right)^2\ge0\)
\(\Rightarrow3.\left(x+1\right)^2-4\ge-4\)
Dấu " = " xảy ra khi : \(x+1=0\)
\(x=-1\)
Vậy \(MIN_B=-4\) khi \(x=-1\)