a) \(A=4x-x^2+3\)
\(A=-\left(x^2-4x-3\right)\)
\(A=-\left(x^2-4x+4-4-3\right)\)
\(A=-\left[\left(x-2\right)^2-7\right]\)
\(A=-\left(x-2\right)^2+7\)
Vậy \(Max_A=7\) khi \(x-2=0\Rightarrow x=2\)
b) \(B=x-x^2\)
\(B=-\left(x^2-x\right)\)
\(B=-\left(x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)\)
\(B=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vậy \(Min_B=\frac{1}{4}\) khi \(x-\frac{1}{2}=\Rightarrow x=\frac{1}{2}\)